Unilateral regulation breaks regularity of Turing patterns.

作者: Tomáš Vejchodský , Filip Jaroš , Milan Kučera , Vojtěch Rybář

DOI: 10.1103/PHYSREVE.96.022212

关键词:

摘要: We consider a reaction-diffusion system undergoing Turing instability and augment it by an additional unilateral source term. investigate its influence on the character of resulting patterns. The nonsmooth positively homogeneous term τv^{-} has favorable properties, but standard linear stability analysis cannot be performed. illustrate importance nonsmoothness numerical case study, which shows that can considerably change if we replace this arbitrarily precise smooth approximation. However, all approximations yield qualitatively similar patterns although not necessarily developing from small disturbances spatially steady state. Further, show breaks approximate symmetry regularity classical yields asymmetric irregular Moreover, given with produces spatial even for diffusion parameters ratios closer to 1 than same without any

参考文章(31)
Leah Edelstein-Keshet, Mathematical Models in Biology Society for Industrial and Applied Mathematics. ,(2005) , 10.1137/1.9780898719147
Yu Chen, Alexander F. Schier, The zebrafish Nodal signal Squint functions as a morphogen Nature. ,vol. 411, pp. 607- 610 ,(2001) , 10.1038/35079121
J. B. Gurdon, P.-Y. Bourillot, Morphogen gradient interpretation Nature. ,vol. 413, pp. 797- 803 ,(2001) , 10.1038/35101500
Christopher B. Kaelin, Gregory S. Barsh, Genetics of Pigmentation in Dogs and Cats Annual Review of Animal Biosciences. ,vol. 1, pp. 125- 156 ,(2013) , 10.1146/ANNUREV-ANIMAL-031412-103659
Alan Mathison Turing, The Chemical Basis of Morphogenesis Philosophical Transactions of the Royal Society B. ,vol. 237, pp. 37- 72 ,(1952) , 10.1098/RSTB.1952.0012
E. J. Crampin, E. A. Gaffney, P. K. Maini, Mode-doubling and tripling in reaction-diffusion patterns on growing domains: A piecewise linear model Journal of Mathematical Biology. ,vol. 44, pp. 107- 128 ,(2002) , 10.1007/S002850100112
Laura Cantini, Claudia Cianci, Duccio Fanelli, Emma Massi, Luigi Barletti, Malbor Asllani, Stochastic amplification of spatial modes in a system with one diffusing species Journal of Mathematical Biology. ,vol. 69, pp. 1585- 1608 ,(2014) , 10.1007/S00285-013-0743-X
JL Aragón, RA Barrio, TE Woolley, RE Baker, PK Maini, None, Nonlinear effects on Turing patterns: time oscillations and chaos. Physical Review E. ,vol. 86, pp. 026201- ,(2012) , 10.1103/PHYSREVE.86.026201
Duccio Fanelli, Claudia Cianci, Francesca Di Patti, Turing instabilities in reaction-diffusion systems with cross diffusion European Physical Journal B. ,vol. 86, pp. 142- ,(2013) , 10.1140/EPJB/E2013-30649-7