Enumerative and Combinatorial Properties of Dyck Partitions

作者: Francesco Brenti

DOI: 10.1006/JCTA.2002.3255

关键词:

摘要: The purpose of this paper is to study the combinatorial and enumerative properties a new class (skew) integer partitions. This closely related Dyck paths plays fundamental role in computation certain Kazhdan?Lusztig polynomials symmetric group Young's lattice. As consequence our results, we obtain some identities for these polynomials.

参考文章(11)
Alain Lascoux, Ordering the Affine Symmetric Group Algebraic Combinatorics and Applications. pp. 219- 231 ,(2001) , 10.1007/978-3-642-59448-9_15
Francesco Brenti, Kazhdan–Lusztig and R-polynomials, Young’s lattice, and Dyck partitions Pacific Journal of Mathematics. ,vol. 207, pp. 257- 286 ,(2002) , 10.2140/PJM.2002.207.257
David Kazhdan, George Lusztig, Representations of Coxeter Groups and Hecke Algebras. Inventiones Mathematicae. ,vol. 53, pp. 165- 184 ,(1979) , 10.1007/BF01390031
James E. Humphreys, Reflection groups and coxeter groups ,(1990)
T. Prellberg, R. Brak, Critical exponents from nonlinear functional equations for partially directed cluster models Journal of Statistical Physics. ,vol. 78, pp. 701- 730 ,(1995) , 10.1007/BF02183685
RICHARD P. STANLEY, Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry Annals of the New York Academy of Sciences. ,vol. 576, pp. 500- 535 ,(1989) , 10.1111/J.1749-6632.1989.TB16434.X
Mireille Bousquet-Mélou, Xavier Gérard Viennot, Stacking of segments and q -enumeration of convex directed polyominoes Journal of Combinatorial Theory, Series A. ,vol. 60, pp. 196- 224 ,(1992) , 10.1016/0097-3165(92)90004-E
R P Stanley, Enumerative combinatorics ,(1986)