Ordering the Affine Symmetric Group

作者: Alain Lascoux

DOI: 10.1007/978-3-642-59448-9_15

关键词:

摘要: We review several descriptions of the affine symmetric group. explicit basis its Bruhat order.

参考文章(14)
Gordon James, Adalbert Kerber, The representation theory of the symmetric group Cambridge University Press. ,(1984) , 10.1017/CBO9781107340732
Anders Björner, Francesco Brenti, An improved tableau criterion for Bruhat order. Electronic Journal of Combinatorics. ,vol. 3, pp. 22- ,(1996) , 10.37236/1246
Nicolas Bourbaki, Groupes et algèbres de Lie Hermann. ,(1971)
Kailash C. Misra, Tetsuji Miwa, Crystal base for the basic representation of\(U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))\) Communications in Mathematical Physics. ,vol. 134, pp. 79- 88 ,(1990) , 10.1007/BF02102090
Meinolf Geck, Sungsoon Kim, Bases for the Bruhat–Chevalley Order on All Finite Coxeter Groups Journal of Algebra. ,vol. 197, pp. 278- 310 ,(1997) , 10.1006/JABR.1997.7096
Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Crystal Graphs and $q$-Analogues of Weight Multiplicities for the Root System $A_n$ arXiv: Quantum Algebra. ,(1995) , 10.1007/BF00750843
Omar Foda, Bernard Leclerc, Masato Okado, Jean-Yves Thibon, Trevor A. Welsh, Branching Functions ofA(1)n−1and Jantzen–Seitz Problem for Ariki–Koike Algebras Advances in Mathematics. ,vol. 141, pp. 322- 365 ,(1999) , 10.1006/AIMA.1998.1783