A recursion formula for k-Schur functions

作者: Daniel Bravo , Luc Lapointe

DOI: 10.1016/J.JCTA.2008.12.001

关键词:

摘要: The Bernstein operators allow one to build recursively the Schur functions. We present a recursion formula for k-Schur functions at t=1 based on combinatorial that generalize operators. leads immediately interpretation expansion coefficients of in terms homogeneous symmetric

参考文章(16)
Alain Lascoux, Ordering the Affine Symmetric Group Algebraic Combinatorics and Applications. pp. 219- 231 ,(2001) , 10.1007/978-3-642-59448-9_15
Gordon James, Adalbert Kerber, The representation theory of the symmetric group Cambridge University Press. ,(1984) , 10.1017/CBO9781107340732
Frank Garvan, Dongsu Kim, Dennis Stanton, Cranks and t-cores. Inventiones Mathematicae. ,vol. 101, pp. 1- 17 ,(1990) , 10.1007/BF01231493
Kailash C. Misra, Tetsuji Miwa, Crystal base for the basic representation of\(U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))\) Communications in Mathematical Physics. ,vol. 134, pp. 79- 88 ,(1990) , 10.1007/BF02102090
Jennifer Morse, Thomas Lam, Mark Shimozono, Luc Lapointe, Affine Insertion and Pieri Rules for the Affine Grassmannian ,(2010)
Thomas Lam, Schubert polynomials for the affine Grassmannian Journal of the American Mathematical Society. ,vol. 21, pp. 259- 281 ,(2006) , 10.1090/S0894-0347-06-00553-4
Luc Lapointe, Jennifer Morse, Tableaux on k + 1-crores, reduced words for affine permutations, and k -Schur expansions Journal of Combinatorial Theory, Series A. ,vol. 112, pp. 44- 81 ,(2005) , 10.1016/J.JCTA.2005.01.003
Luc Lapointe, Jennifer Morse, A k-tableau characterization of k-Schur functions Advances in Mathematics. ,vol. 213, pp. 183- 204 ,(2007) , 10.1016/J.AIM.2006.12.005
J. Morse, A. Lascoux, L. Lapointe, Tableau atoms and a new Macdonald positivity conjecture Duke Mathematical Journal. ,vol. 116, pp. 103- 146 ,(2003) , 10.1215/S0012-7094-03-11614-2