On perturbation procedure for limit cycle analysis

作者: S.H. Chen , Y.K. Cheung , S.L. Lau

DOI: 10.1016/0020-7462(91)90086-9

关键词:

摘要: Abstract In the use of perturbation procedure for analysing limit cycle an autonomous system, people usually assumed initial condition ẋ(0) = 0. However, this is often simplified to x nh (0) 0, (n= 1, 2,…) and taken as additional determine a constant, say bn, homogeneous solution xn cosτ + bn sin τ equation each order. Nevertheless, commonly accepted will lead large errors, especially case larger values parameter e. paper, constant phase angle On in solutions xnh Ancos (τ On) (n adopted, i.e. O1 O2 … O. The cycles obtained by present corresponding are good agreement with numerical results Runge-Kutta integration, analytical expression incremental harmonic balance method even e 1.

参考文章(11)
MINORU URABE, Numerical Study of Periodic Solutions of the van der Pol Equation International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics. pp. 184- 192 ,(1963) , 10.1016/B978-0-12-395651-4.50024-6
H. Bavinck, J. Grasman, The method of matched asymptotic expansions for the periodic solution of the van der pol equation International Journal of Non-Linear Mechanics. ,vol. 9, pp. 421- 434 ,(1974) , 10.1016/0020-7462(74)90008-0
R.E. Mickens, Perturbation procedure for the Van Der Pol oscillator based on the Hopf bifurcation theorem Journal of Sound and Vibration. ,vol. 127, pp. 187- 191 ,(1988) , 10.1016/0022-460X(88)90359-8
R.T. Davis, K.T. Alfriend, Solutions to Van der Pol's equation using a perturbation method International Journal of Non-Linear Mechanics. ,vol. 2, pp. 153- 162 ,(1967) , 10.1016/0020-7462(67)90011-X
Ali Hasan Nayfeh, An Expansion Method for Treating Singular Perturbation Problems Journal of Mathematical Physics. ,vol. 6, pp. 1946- 1951 ,(1965) , 10.1063/1.1704745
Thomas D. Burton, Non-linear oscillator limit cycle analysis using a time transformation approach International Journal of Non-Linear Mechanics. ,vol. 17, pp. 7- 19 ,(1982) , 10.1016/0020-7462(82)90033-6
S. L. Lau, Y. K. Cheung, Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems Journal of Applied Mechanics. ,vol. 48, pp. 959- 964 ,(1981) , 10.1115/1.3157762