Recycling cardiogenic artifacts in impedance pneumography

作者: Hau-tieng Wu , John Malik , Yao Lu

DOI:

关键词:

摘要: Purpose: Biomedical sensors often exhibit cardiogenic artifacts which, while distorting the signal of interest, carry useful hemodynamic information. We propose an algorithm to remove and extract information from these artifacts. Methods: apply a nonlinear time-frequency analysis technique, de-shape synchrosqueezing transform (dsSST), adaptively isolate high- low-frequency components single-channel signal. demonstrate this technique's effectiveness by removing deriving artifact in impedance pneumography (IP). Results: The instantaneous heart rate is extracted, cardiac respiratory signals are reconstructed. Conclusions: dsSST suitable for generating IP. that usefulness as recycling tool extends other biomedical exhibiting

参考文章(28)
Dmytro Iatsenko, Peter V. E. McClintock, Aneta Stefanovska, Nonlinear mode decomposition: a noise-robust, adaptive decomposition method. Physical Review E. ,vol. 92, pp. 032916- 032916 ,(2015) , 10.1103/PHYSREVE.92.032916
Shen Luo, W.J. Tompkins, J.G. Webster, Cardiogenic artifact cancellation in apnea monitoring international conference of the ieee engineering in medicine and biology society. ,vol. 2, pp. 968- 969 ,(1994) , 10.1109/IEMBS.1994.415237
Thomas F. Schuessler, Stewart B. Gottfried, Peter Goldberg, Robert E. Kearney, Jason H. T. Bates, An Adaptive Filter to Reduce Cardiogenic Oscillations on Esophageal Pressure Signals Annals of Biomedical Engineering. ,vol. 26, pp. 260- 267 ,(1998) , 10.1114/1.55
Marvin A. Sackner, Richard A. Hoffman, David Stroh, Bruce P. Krieger, Thoracocardiography. Part 1: Noninvasive measurement of changes in stroke volume comparisons to thermodilution. Chest. ,vol. 99, pp. 613- 622 ,(1991) , 10.1378/CHEST.99.3.613
G. B. Bucklar, V. Kaplan, K. E. Bloch, Signal processing technique for non-invasive real-time estimation of cardiac output by inductance cardiography (thoracocardiography). Medical & Biological Engineering & Computing. ,vol. 41, pp. 302- 309 ,(2003) , 10.1007/BF02348435
Toshiyo Tamura, Yuka Maeda, Masaki Sekine, Masaki Yoshida, Wearable Photoplethysmographic Sensors—Past and Present Electronics. ,vol. 3, pp. 282- 302 ,(2014) , 10.3390/ELECTRONICS3020282
V-P Seppä, J Hyttinen, J Viik, A method for suppressing cardiogenic oscillations in impedance pneumography. Physiological Measurement. ,vol. 32, pp. 337- 345 ,(2011) , 10.1088/0967-3334/32/3/005
Yu-Chun Chen, Ming-Yen Cheng, Hau-Tieng Wu, Non-parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors Journal of the Royal Statistical Society: Series B (Statistical Methodology). ,vol. 76, pp. 651- 682 ,(2014) , 10.1111/RSSB.12039
Debra E. Weese-Mayer, Robert T. Brouillette, Anna S. Morrow, Linda P. Conway, Linda M. Klemka-Walden, Carl E. Hunt, Assessing validity of infant monitor alarms with event recording The Journal of Pediatrics. ,vol. 115, pp. 702- 708 ,(1989) , 10.1016/S0022-3476(89)80645-6
A. J. Wilson, C. I. Franks, I. L. Freeston, Methods of filtering the heart-beat artefact from the breathing waveform of infants obtained by impedance pneumography Medical & Biological Engineering & Computing. ,vol. 20, pp. 293- 298 ,(1982) , 10.1007/BF02442795