Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion

作者: Shengfu Deng

DOI: 10.3934/DCDSS.2016068

关键词:

摘要: We investigate the 1D Swift-Hohenberg equation with dispersion $$u_t+2u_{\xi\xi}-\sigma u_{\xi\xi\xi}+u_{\xi\xi\xi\xi}=\alpha u+\beta u^2-\gamma u^3,$$ where $\sigma, \alpha, \beta$ and $\gamma$ are constants. Even if only stationary solutions of this considered, dispersion term $-\sigma u_{\xi\xi\xi}$ destroys spatial reversibility which plays an important role for studying localized patterns. In paper, we focus on its traveling wave directly apply dynamical approach to provide first rigorous proof existence periodic homoclinic bifurcating from origin without condition as parameters varied.

参考文章(33)
Paul F. Byrd, Morris D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists ,(2014)
M. Lopez-Fernandez, S. Sauter, Fast and stable contour integration for high order divided differences via elliptic functions Mathematics of Computation. ,vol. 84, pp. 1291- 1315 ,(2014) , 10.1090/S0025-5718-2014-02890-1
R. E. LaQuey, S. M. Mahajan, P. H. Rutherford, W. M. Tang, Nonlinear Saturation of the Trapped-Ion Mode Physical Review Letters. ,vol. 34, pp. 391- 394 ,(1975) , 10.1103/PHYSREVLETT.34.391
G. Iooss, A. M. Rucklidge, On the Existence of Quasipattern Solutions of the Swift–Hohenberg Equation Journal of Nonlinear Science. ,vol. 20, pp. 361- 394 ,(2010) , 10.1007/S00332-010-9063-0
Shengfu Deng, Xiaopei Li, Generalized homoclinic solutions for the Swift–Hohenberg equation Journal of Mathematical Analysis and Applications. ,vol. 390, pp. 15- 26 ,(2012) , 10.1016/J.JMAA.2011.11.074
Punit Gandhi, Cédric Beaume, Edgar Knobloch, A New Resonance Mechanism in the Swift--Hohenberg Equation with Time-Periodic Forcing Siam Journal on Applied Dynamical Systems. ,vol. 14, pp. 860- 892 ,(2015) , 10.1137/14099468X
Elizabeth Makrides, Björn Sandstede, Predicting the bifurcation structure of localized snaking patterns Physica D: Nonlinear Phenomena. ,vol. 268, pp. 59- 78 ,(2014) , 10.1016/J.PHYSD.2013.11.009
J. Swift, P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability Physical Review A. ,vol. 15, pp. 319- 328 ,(1977) , 10.1103/PHYSREVA.15.319