On the Existence of Quasipattern Solutions of the Swift–Hohenberg Equation

作者: G. Iooss , A. M. Rucklidge

DOI: 10.1007/S00332-010-9063-0

关键词: Quasiperiodic functionQuasiperiodicityPartial differential equationMathematicsSwift–Hohenberg equationOrder (group theory)Divisor (algebraic geometry)Mathematical analysisDivergent seriesPattern formation

摘要: Quasipatterns (two-dimensional patterns that are quasiperiodic in any spatial direction) remain one of the outstanding problems pattern formation. As with involving quasiperiodicity, there is a small divisor problem. In this paper, we consider 8-fold, 10-fold, 12-fold, and higher order quasipattern solutions Swift-Hohenberg equation. We prove formal solution, given by divergent series, may be used to build smooth function which an approximate solution pattern-forming partial differential equation (PDE) up exponentially error.

参考文章(47)
Vladimir Igorevich Arnolʹd, Djilali Embarek, Chapitres supplémentaires de la théorie deséquations différentielles ordinaires Mir. ,(1980)
Ulrike E. Volmar, Hanns Walter Müller, Quasiperiodic patterns in Rayleigh-Benard convection under gravity modulation Physical Review E. ,vol. 56, pp. 5423- 5430 ,(1997) , 10.1103/PHYSREVE.56.5423
Moritz Adelmeyer, Gérard Iooss, Topics in bifurcation theory and applications ,(1999)
Pascal Chossat, Gérard Iooss, The Couette-Taylor problem ,(1994)
Rafael de la Llav, A Tutorial on Kam Theory ,(2003)
Lawrence C. Washington, Introduction to Cyclotomic Fields ,(1982)