14 – Mathematical Models for Computational Neuroscience

作者: Mauro Ursino , Filippo Cona , Elisa Magosso

DOI: 10.1016/B978-0-12-411557-6.00014-8

关键词:

摘要: We present the main aspects of mathematical models for computational neuroscience, with emphasis on basic principles that can drive construction biologically inspired neural networks oriented to cognitive neuroscience problems. This chapter is subdivided into two distinct parts. In first, principal individual units (Hodgkin–Huxley, integrate and fire, rate models) are described, together a brief portrayal synapse formalism. second, assuming simplicity, we summarize peculiarities important network typologies: associative (both hetero- auto-association), self-organized networks, error-correction (within paradigm reinforcement learning). For each network, simulation exempla displayed connections physiological pathological conditions relevance discussed.

参考文章(13)
Teuvo Kohonen, Self-organized formation of topologically correct feature maps Biological Cybernetics. ,vol. 43, pp. 509- 521 ,(1988) , 10.1007/BF00337288
A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve The Journal of Physiology. ,vol. 117, pp. 500- 544 ,(1952) , 10.1113/JPHYSIOL.1952.SP004764
Mauro Ursino, Filippo Cona, Melissa Zavaglia, The generation of rhythms within a cortical region: analysis of a neural mass model. NeuroImage. ,vol. 52, pp. 1080- 1094 ,(2010) , 10.1016/J.NEUROIMAGE.2009.12.084
Marco Steinhauser, Martin Maier, Ronald Hübner, Modeling Behavioral Measures of Error Detection in Choice Tasks : Response Monitoring Versus Conflict Monitoring Journal of Experimental Psychology: Human Perception and Performance. ,vol. 34, pp. 158- 176 ,(2008) , 10.1037/0096-1523.34.1.158
S. R. Kelso, A. H. Ganong, T. H. Brown, Hebbian synapses in hippocampus. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 83, pp. 5326- 5330 ,(1986) , 10.1073/PNAS.83.14.5326
FILIPPO CONA, MAURO URSINO, A multi-layer neural-mass model for learning sequences using theta/gamma oscillations. International Journal of Neural Systems. ,vol. 23, pp. 1250036- ,(2013) , 10.1142/S0129065712500360
Ben H. Jansen, Vincent G. Rit, Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns Biological Cybernetics. ,vol. 73, pp. 357- 366 ,(1995) , 10.1007/BF00199471
Andrew G. Barto, Richard S. Sutton, Charles W. Anderson, Neuronlike adaptive elements that can solve difficult learning control problems systems man and cybernetics. ,vol. 13, pp. 834- 846 ,(1983) , 10.1109/TSMC.1983.6313077
J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 81, pp. 3088- 3092 ,(1984) , 10.1073/PNAS.81.10.3088
George Dragoi, György Buzsáki, Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies Neuron. ,vol. 50, pp. 145- 157 ,(2006) , 10.1016/J.NEURON.2006.02.023