Proton transport in carbonic anhydrase: Insights from molecular simulation.

作者: C. Mark Maupin , Gregory A. Voth

DOI: 10.1016/J.BBAPAP.2009.09.006

关键词:

摘要: This article reviews the insights gained from molecular simulations of human carbonic anhydrase II (HCA II) utilizing non-reactive and reactive force fields. The with a field explore protein transfer transport via Grotthuss shuttling, while probe larger conformational dynamics that underpin various contributions to rate-limiting proton event. Specific attention is given orientational stability His64 group characteristics active site water cluster, in an effort determine both their impact on maximal catalytic rate. explicit events are described by multistate empirical valence bond (MS-EVB) method, as alternative pathways for excess charge defect enter/leave site. simulation results interpreted light experimental wild-type enzyme site-specific mutations HCA order better elucidate key factors contribute its exceptional efficiency.

参考文章(71)
Johan Aaqvist, Michael Fothergill, Arieh Warshel, Computer Simulation of the CO2/HCO3- Interconversion Step in Human Carbonic Anhydrase I Journal of the American Chemical Society. ,vol. 115, pp. 631- 635 ,(1993) , 10.1021/JA00055A036
Masasuke Yoshida, Eiro Muneyuki, Toru Hisabori, ATP synthase--a marvellous rotary engine of the cell. Nature Reviews Molecular Cell Biology. ,vol. 2, pp. 669- 677 ,(2001) , 10.1038/35089509
Hakan STEINER, Bengt-Harald JONSSON, Sven LINDSKOG, The Catalytic Mechanism of Carbonic Anhydrase FEBS Journal. ,vol. 59, pp. 253- 259 ,(1975) , 10.1111/J.1432-1033.1975.TB02449.X
Tyler J. F. Day, Alexander V. Soudackov, Martin Čuma, Udo W. Schmitt, Gregory A. Voth, A second generation multistate empirical valence bond model for proton transport in aqueous systems The Journal of Chemical Physics. ,vol. 117, pp. 5839- 5849 ,(2002) , 10.1063/1.1497157
Jiayin Zheng, Balendu Sankara Avvaru, Chingkuang Tu, Robert McKenna, David N. Silverman, Role of hydrophilic residues in proton transfer during catalysis by human carbonic anhydrase II. Biochemistry. ,vol. 47, pp. 12028- 12036 ,(2008) , 10.1021/BI801473W
C. Mark Maupin, Gregory A. Voth, Preferred orientations of His64 in human carbonic anhydrase II. Biochemistry. ,vol. 46, pp. 2938- 2947 ,(2007) , 10.1021/BI062170F
Udo W. Schmitt, Gregory A. Voth, Multistate Empirical Valence Bond Model for Proton Transport in Water Journal of Physical Chemistry B. ,vol. 102, pp. 5547- 5551 ,(1998) , 10.1021/JP9818131
A. LILJAS, K. K. KANNAN, P.-C. BERGSTÉN, I. WAARA, K. FRIDBORG, B. STRANDBERG, U. CARLBOM, L. JÄRUP, S. LÖVGREN, M. PETEF, Crystal structure of human carbonic anhydrase C. Nature. ,vol. 235, pp. 131- 137 ,(1972) , 10.1038/NEWBIO235131A0
Qiang Cui, Marcus Elstner, Efthimios Kaxiras, Thomas Frauenheim, Martin Karplus, A QM/MM Implementation of the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) Method Journal of Physical Chemistry B. ,vol. 105, pp. 569- 585 ,(2001) , 10.1021/JP0029109