A random variance model for detection of differential gene expression in small microarray experiments.

作者: G. W. Wright , R. M. Simon

DOI: 10.1093/BIOINFORMATICS/BTG345

关键词:

摘要: Motivation: Microarray techniques provide a valuable way of characterizing the molecular nature disease. Unfortunately expense and limited specimen availability often lead to studies with small sample sizes. This makes accurate estimation variability difficult, since variance estimates made on gene by basis will have few degrees freedom, assumption that all genes share equal is unlikely be true. Results: We propose model which within variances are drawn from an inverse gamma distribution, whose parameters estimated across genes. results in test statistic minor variation those used standard linear models. demonstrate assumptions valid experimental data, has more power than tests pick up large changes expression, while not increasing rate false positives. Availability: method incorporated into BRB-ArrayTools version 3.0 (http://linus.nci.nih.gov/BRB-ArrayTools.html). Supplementary material: ftp://linus.nci.nih.gov/pub/ techreport/RVM_supplement.pdf Contact: wrightge@mail.nih.gov

参考文章(7)
Andreas Rosenwald, George Wright, Wing C. Chan, Joseph M. Connors, Elias Campo, Richard I. Fisher, Randy D. Gascoyne, H. Konrad Muller-Hermelink, Erlend B. Smeland, Jena M. Giltnane, Elaine M. Hurt, Hong Zhao, Lauren Averett, Liming Yang, Wyndham H. Wilson, Elaine S. Jaffe, Richard Simon, Richard D. Klausner, John Powell, Patricia L. Duffey, Dan L. Longo, Timothy C. Greiner, Dennis D. Weisenburger, Warren G. Sanger, Bhavana J. Dave, James C. Lynch, Julie Vose, James O. Armitage, Emilio Montserrat, Armando López-Guillermo, Thomas M. Grogan, Thomas P. Miller, Michel LeBlanc, German Ott, Stein Kvaloy, Jan Delabie, Harald Holte, Peter Krajci, Trond Stokke, Louis M. Staudt, The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma The New England Journal of Medicine. ,vol. 346, pp. 1937- 1947 ,(2002) , 10.1056/NEJMOA012914
Ingrid Hedenfalk, David Duggan, Yidong Chen, Michael Radmacher, Michael Bittner, Richard Simon, Paul Meltzer, Barry Gusterson, Manel Esteller, Mark Raffeld, Zohar Yakhini, Amir Ben-Dor, Edward Dougherty, Juha Kononen, Lukas Bubendorf, Wilfrid Fehrle, Stefania Pittaluga, Sofia Gruvberger, Niklas Loman, Oskar Johannsson, Håkan Olsson, Benjamin Wilfond, Guido Sauter, Olli-P. Kallioniemi, Åke Borg, Jeffrey Trent, Gene-Expression Profiles in Hereditary Breast Cancer The New England Journal of Medicine. ,vol. 344, pp. 539- 548 ,(2001) , 10.1056/NEJM200102223440801
Yoav Benjamini, Yosef Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 57, pp. 289- 300 ,(1995) , 10.1111/J.2517-6161.1995.TB02031.X
Edward L Korn, James F Troendle, Lisa M McShane, Richard Simon, Controlling the number of false discoveries: application to high-dimensional genomic data Journal of Statistical Planning and Inference. ,vol. 124, pp. 379- 398 ,(2004) , 10.1016/S0378-3758(03)00211-8
V. G. Tusher, R. Tibshirani, G. Chu, Significance analysis of microarrays applied to the ionizing radiation response Proceedings of the National Academy of Sciences of the United States of America. ,vol. 98, pp. 5116- 5121 ,(2001) , 10.1073/PNAS.091062498
M Kathleen Kerr, Gary A Churchill, Experimental design for gene expression microarrays Biostatistics. ,vol. 2, pp. 183- 201 ,(2001) , 10.1093/BIOSTATISTICS/2.2.183