Robust estimation of the optical flow based on VQ--BF

作者: Manuel Graña

DOI: 10.1007/978-3-7908-1775-1_12

关键词:

摘要: To increase the robustness of optical flow computation in context mobile robotics, we introduce an image filtering process based on codebook computed by Vector Quantization (VQ) algorithms, which usually are used for compression and codification purposes. The Self Organizing Map is to compute adaptively vector quantizers color imaged sequences. each sequence then as a smoothing filter, VQ Bayesian Filter (VQ-BF), preprocessing images sequence. filtered basis via pixel region correlation algorithms. gives good estimation at edges, whereas robust dense flow.

参考文章(27)
Irfan Essa, Alex Pentland, Facial Expression Recognition Using Image Motion Springer, Dordrecht. pp. 271- 298 ,(1997) , 10.1007/978-94-015-8935-2_12
Reinhard Klette, Andreas Koschan, Karsten Schluns, Computer Vision: Three-Dimensional Data from Images ,(1998)
Michael J. Black, Yaser Yacoob, Shanon X. Ju, Recognizing Human Motion Using Parameterized Models of Optical Flow Springer, Dordrecht. pp. 245- 269 ,(1997) , 10.1007/978-94-015-8935-2_11
Stephen Maybank, M. R. Schroeder, T. S. Huang, Teuvo Kohonen, Theory of Reconstruction from Image Motion ,(1992)
Linda G. Shapiro, Robert M. Haralock, Computer and Robot Vision Addison-Wesley Longman Publishing Co., Inc.. ,(1991)
Motion-Based Recognition Kluwer Academic Publishers. ,(1997) , 10.1007/978-94-015-8935-2
Teuvo Kohonen, Self-Organizing Maps ,(1995)
J. Konrad, E. Dubois, Bayesian estimation of motion vector fields IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 14, pp. 910- 927 ,(1992) , 10.1109/34.161350