Set-Theoretical Models for Quantum Systems

作者: Newton C. A. Da Costa , Décio Krause

DOI: 10.1007/978-94-017-2043-4_16

关键词:

摘要: The general mathematical framework underlying the usual physical theories is naive set theory, but it obvious that every construction can be performed in an axiomatized theory like Zermelo-Fraenkel or Kelley-Morse. In fact, we could consider axiomatization of by means Suppes’ predicates (or Bourbaki’s species structures), which are formulas and note models such also set-theoretical structures [6]. particular, formulations quantum mechanics (henceforth, QM) use a fragment language functional analysis; so, they based on theory.1

参考文章(37)
Thomas Mormann, Andoni Ibarra, Javier Echeverria, The Space of Mathematics ,(1992)
Décio Krause, Axioms for collections of indistinguishable objects Logique Et Analyse. ,vol. 39, pp. 69- 93 ,(1996)
N. C. A. Da Costa, F. A. Doria, Suppes predicates for classical physics ,(1992)
Toraldo di Francia, The Investigation of the Physical World ,(1981)
Gino Roncaglia, Carlo Cellucci, Congresso Logica E. Filosofia Della Scienza, Maria Concetta Di Maio, Logica E Filosofia Della Scienza Problemi E Prospettive : Atti Del Congresso Triennale Della Società Italiana di Logica E Filosofia Delle Scienze, Lucca, 7-10 Gennaio 1993 Edizioni ETS. ,(1994)
Elena Castellani, Interpreting bodies : classical and quantum objects in modern physics Princeton University Press. ,(1998)
Max Jammer, Eugen Merzbacher, The conceptual development of quantum mechanics ,(1966)
Steven French, Décio Krause, Quantum objects are vague objects ,(1996)
J. L. Bell, Mosheh Maḥover, A course in mathematical logic ,(1977)