The Mathematics of Non-Individuality

作者: Décio Krause

DOI:

关键词:

摘要: Some of the forerunners quantum theory regarded basic entities such theories as 'non-individuals'. One problems is to treat collections 'things', for they do not obey axioms standard set like Zermelo-Fraenkel. In this paper, objects which concept identity (Leibinizian identity) does apply are termed 'quasi-sets'. The motivation a theory, linked what we call 'the Manin problem', presented, so its specific axioms. At end, it shown how statistics can be obtained within quasi-set thbeory.

参考文章(28)
Maria L. Dalla Chiara, G. Toraldo di Francia, IDENTITY QUESTIONS FROM QUANTUM THEORY Boston studies in the philosophy of science. ,vol. 163, pp. 39- 46 ,(1995) , 10.1007/978-94-017-2658-0_3
Newton C. A. Da Costa, Décio Krause, Set-Theoretical Models for Quantum Systems Springer Netherlands. pp. 171- 181 ,(1999) , 10.1007/978-94-017-2043-4_16
Décio Krause, Axioms for collections of indistinguishable objects Logique Et Analyse. ,vol. 39, pp. 69- 93 ,(1996)
William S. Hatcher, The logical foundations of mathematics ,(1982)
Herbert B Enderton, Elements of Set Theory ,(2012)
David Hume, A Treatise of Human Nature ,(1970)
Adonai S. Sant'Anna, Decio Krause, Aurelio Sartorelli, A critical study on the concept of identity in Zermelo-Fraenkel-like axioms arXiv: Logic. ,(2001)
Steven French, Dean Rickles, Understanding permutation symmetry Symmetries in Physics. pp. 212- 238 ,(2003) , 10.1017/CBO9780511535369.013
Steven French, Decio Krause, Opaque predicates, veiled sets and their logic arXiv: Quantum Physics. ,(1998)