Aspects of Computational Circuit Analysis

作者: W. M. Coughran , Eric Grosse , Donald J. Rose

DOI: 10.1007/978-1-4613-1985-6_4

关键词:

摘要: A hierarchical formulation of the differential-algebraic systems describing circuit behavior is presented. number algorithms that have proven effective are reviewed. These include multidimensional splines preserve monotonicity, sparse direct and iterative methods for linear equations, damped-Newton Newton-iterative techniques nonlinear continuation methods, low-order time-integration formulae. Some aspects time macromodeling described.

参考文章(32)
S.C. Eisenstat, M.H. Schultz, A.H. Sherman, Considerations in the Design of Software for Sparse Gaussian Elimination. Sparse Matrix Computations. pp. 263- 273 ,(1976) , 10.1016/B978-0-12-141050-6.50020-9
Brian A. Barsky, John C. Beatty, Richard H. Bartels, An introduction to the use of splines in computer graphics Morgan Kaufmann Publishers Inc.. ,(1986)
R. E. Bank, D. J. Rose, Global approximate Newton methods Numerische Mathematik. ,vol. 37, pp. 279- 295 ,(1981) , 10.1007/BF01398257
S. Sastry, C. Desoer, P. Varaiya, Jump behavior of circuits and systems conference on decision and control. ,vol. 20, pp. 1043- 1047 ,(1981) , 10.1109/CDC.1981.269377
Eric Grosse, Tensor spline approximation Linear Algebra and its Applications. ,vol. 34, pp. 29- 41 ,(1980) , 10.1016/0024-3795(80)90157-3
Joseph E. Pasciak, Alan George, Joseph W. Liu, Computer solution of large sparse positive definite systems Mathematics of Computation. ,vol. 39, pp. 305- ,(1982) , 10.2307/2007640
R. B. Kellogg, C. B. Garcia, W. I. Zangwill, Pathways to solutions, fixed points, and equilibria Mathematics of Computation. ,vol. 40, pp. 720- ,(1983) , 10.2307/2007547
R.E. Bank, W.M. Coughran, W. Fichtner, E.H. Grosse, D.J. Rose, R.K. Smith, Transient Simulation of Silicon Devices and Circuits IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. ,vol. 4, pp. 436- 451 ,(1985) , 10.1109/TCAD.1985.1270142
L.R. Petzold, Description of DASSL: a differential/algebraic system solver 10. international mathematics and computers simulation congress on systems simulation and scientific computation, Montreal, Canada, 9 Aug 1982. ,(1982)