Spectral radius properties for layer potentials associated with the elastostatics and hydrostatics equations in nonsmooth domains

作者: Irina Mitrea

DOI: 10.1007/BF01259379

关键词:

摘要: By producing a L2 convergent Neumann series, we prove the invertibility of elastostatics and hydrostatics boundary layer potentials on arbitrary Lipschitz domains with small character 3D polyhedra large dihedral angles.

参考文章(23)
V. Kozlov, V. Maz’ya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities Mathematical Surveys and Monographs. ,vol. 52, ,(2002) , 10.1090/SURV/052
Steve Hofmann, On singular integrals of Calderón-type in Rn and BMO Revista Matematica Iberoamericana. ,vol. 10, pp. 467- 505 ,(1994) , 10.4171/RMI/159
Konrad Jörgens, Linear integral operators ,(1982)
E. B. Fabes, C. E. Kenig, G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains Duke Mathematical Journal. ,vol. 57, pp. 769- 793 ,(1988) , 10.1215/S0012-7094-88-05734-1
V. D. Kupradze, I. Meroz, H. Gutfreund, Potential methods in the theory of elasticity Israel Program for Scientific Translations. ,(1965)
B. E. J. Dahlberg, C. E. Kenig, G. C. Verchota, Boundary value problems for the systems of elastostatics in Lipschitz domains Duke Mathematical Journal. ,vol. 57, pp. 795- 818 ,(1988) , 10.1215/S0012-7094-88-05735-3
David E Edmunds, W D Evans, Spectral theory and differential operators ,(1995)
Eugene Fabes, Mark Sand, Jin Keun Seo, The Spectral Radius of the Classical Layer Potentials on Convex Domains Institute for Mathematics and Its Applications. ,vol. 42, pp. 129- 137 ,(1992) , 10.1007/978-1-4612-2898-1_12