Correspondence analysis of genes and tissue types and finding genetic links from microarray data.

作者: Hirohisa Kishino , Peter J. Waddell

DOI: 10.11234/GI1990.11.83

关键词:

摘要: In this paper, we propose and use two novel procedures for the analysis of microarray gene expression data. The first is correspondence which visualizes relationship between genes tissues as 2 dimensional graphs, oriented so that distances are preserved, primarily distinguish certain types tissue spatially close to those tissues. For inference genetic links, partial correlations rather than key issue. A correlation i j after effect surrounding has been subtracted out their pairwise correlation. This leads area graphical modeling. limitation modeling approach matrix profiles degenerate whenever number be analyzed exceeds distinct measurements. can cause considerable problems, calculation typically uses inverse matrix. To avoid limitation, practical multiple regression with variable selection measure net, screened, pairs genes. Possible biases arising from a subset genome examined in worked examples. It seems both these approaches more natural ways analyzing data currently popular way clustering.

参考文章(13)
Douglas T Ross, Uwe Scherf, Michael B Eisen, Charles M Perou, Christian Rees, Paul Spellman, Vishwanath Iyer, Stefanie S Jeffrey, Matt Van de Rijn, Mark Waltham, Alexander Pergamenschikov, JC Lee, Deval Lashkari, Dari Shalon, Timothy G Myers, John N Weinstein, David Botstein, Patrick O Brown, None, Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics. ,vol. 24, pp. 227- 235 ,(2000) , 10.1038/73432
Enrique Castillo, José Manuel Gutiérrez, Ali S. Hadi, Modeling Probabilistic Networks of Discrete and Continuous Variables Journal of Multivariate Analysis. ,vol. 64, pp. 48- 65 ,(1998) , 10.1006/JMVA.1997.1709
U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, A. J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 6745- 6750 ,(1999) , 10.1073/PNAS.96.12.6745
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, E. S. Lander, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. ,vol. 286, pp. 531- 537 ,(1999) , 10.1126/SCIENCE.286.5439.531
Hirohisa Kishino, Peter J. Waddell, Cluster inference methods and graphical models evaluated on NCI60 microarray gene expression data. Genome Informatics. ,vol. 11, pp. 129- 140 ,(2000) , 10.11234/GI1990.11.129
H. Akaike, A new look at the statistical model identification IEEE Transactions on Automatic Control. ,vol. 19, pp. 716- 723 ,(1974) , 10.1109/TAC.1974.1100705
M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Cluster analysis and display of genome-wide expression patterns Proceedings of the National Academy of Sciences of the United States of America. ,vol. 95, pp. 14863- 14868 ,(1998) , 10.1073/PNAS.95.25.14863
David J. Lockhart, Elizabeth A. Winzeler, Genomics, gene expression and DNA arrays. Nature. ,vol. 405, pp. 827- 836 ,(2000) , 10.1038/35015701
Ingram Olkin, Allan Sampson, COMPARISON OF META-ANALYSIS VERSUS ANALYSIS OF VARIANCE OF INDIVIDUAL PATIENT DATA Biometrics. ,vol. 54, pp. 317- 322 ,(1998) , 10.2307/2534018