OncoNEM: inferring tumor evolution from single-cell sequencing data.

作者: Edith M. Ross , Florian Markowetz

DOI: 10.1186/S13059-016-0929-9

关键词:

摘要: Single-cell sequencing promises a high-resolution view of genetic heterogeneity and clonal evolution in cancer. However, methods to infer tumor from single-cell data lag behind developed for bulk-sequencing data. Here, we present OncoNEM, probabilistic method inferring intra-tumor evolutionary lineage trees somatic single nucleotide variants cells. OncoNEM identifies homogeneous cellular subpopulations infers their genotypes as well tree describing relationships. In simulation studies, assess OncoNEM’s robustness benchmark its performance against competing methods. Finally, show applicability case studies muscle-invasive bladder cancer essential thrombocythemia.

参考文章(36)
Salim Akhter Chowdhury, Stanley E. Shackney, Kerstin Heselmeyer-Haddad, Thomas Ried, Alejandro A. Schäffer, Russell Schwartz, Algorithms to Model Single Gene, Single Chromosome, and Whole Genome Copy Number Changes Jointly in Tumor Phylogenetics PLoS Computational Biology. ,vol. 10, pp. e1003740- ,(2014) , 10.1371/JOURNAL.PCBI.1003740
P. Nowell, The clonal evolution of tumor cell populations Science. ,vol. 194, pp. 23- 28 ,(1976) , 10.1126/SCIENCE.959840
Andrew E. O. Hughes, Vincent Magrini, Ryan Demeter, Christopher A. Miller, Robert Fulton, Lucinda L. Fulton, William C. Eades, Kevin Elliott, Sharon Heath, Peter Westervelt, Li Ding, Donald F. Conrad, Brian S. White, Jin Shao, Daniel C. Link, John F. DiPersio, Elaine R. Mardis, Richard K. Wilson, Timothy J. Ley, Matthew J. Walter, Timothy A. Graubert, Clonal Architecture of Secondary Acute Myeloid Leukemia Defined by Single-Cell Sequencing PLoS Genetics. ,vol. 10, pp. e1004462- ,(2014) , 10.1371/JOURNAL.PGEN.1004462
Achim Tresch, Holger Fröhlich, Cordula Zeller, A Bayesian network view on nested effects models. Eurasip Journal on Bioinformatics and Systems Biology. ,vol. 2009, pp. 195272- 195272 ,(2009) , 10.1155/2009/195272
Rick L Jenison, Steven Greenberg, Keith R Kluender, William S Rhode, None, A composite model of the auditory periphery for the processing of speech based on the filter response functions of single auditory‐nerve fibers Journal of the Acoustical Society of America. ,vol. 90, pp. 773- 786 ,(1991) , 10.1121/1.401947
Charles Gawad, Winston Koh, Stephen R. Quake, Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics Proceedings of the National Academy of Sciences of the United States of America. ,vol. 111, pp. 17947- 17952 ,(2014) , 10.1073/PNAS.1420822111
L Melchor, A Brioli, C P Wardell, A Murison, N E Potter, M F Kaiser, R A Fryer, D C Johnson, D B Begum, S Hulkki Wilson, G Vijayaraghavan, I Titley, M Cavo, F E Davies, B A Walker, G J Morgan, Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma Leukemia. ,vol. 28, pp. 1705- 1715 ,(2014) , 10.1038/LEU.2014.13
Xun Xu, Yong Hou, Xuyang Yin, Li Bao, Aifa Tang, Luting Song, Fuqiang Li, Shirley Tsang, Kui Wu, Hanjie Wu, Weiming He, Liang Zeng, Manjie Xing, Renhua Wu, Hui Jiang, Xiao Liu, Dandan Cao, Guangwu Guo, Xueda Hu, Yaoting Gui, Zesong Li, Wenyue Xie, Xiaojuan Sun, Min Shi, Zhiming Cai, Bin Wang, Meiming Zhong, Jingxiang Li, Zuhong Lu, Ning Gu, Xiuqing Zhang, Laurie Goodman, Lars Bolund, Jian Wang, Huanming Yang, Karsten Kristiansen, Michael Dean, Yingrui Li, Jun Wang, None, Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor Cell. ,vol. 148, pp. 886- 895 ,(2012) , 10.1016/J.CELL.2012.02.025
Siddharth S Dey, Lennart Kester, Bastiaan Spanjaard, Magda Bienko, Alexander van Oudenaarden, Integrated genome and transcriptome sequencing of the same cell Nature Biotechnology. ,vol. 33, pp. 285- 289 ,(2015) , 10.1038/NBT.3129
Andrew Roth, Jaswinder Khattra, Damian Yap, Adrian Wan, Emma Laks, Justina Biele, Gavin Ha, Samuel Aparicio, Alexandre Bouchard-Côté, Sohrab P Shah, None, PyClone: statistical inference of clonal population structure in cancer Nature Methods. ,vol. 11, pp. 396- 398 ,(2014) , 10.1038/NMETH.2883