Optimal convergence and long-time conservation of exponential integration for Schrödinger equations in a normal or highly oscillatory regime.

作者: Bin Wang , Yaolin Jiang

DOI:

关键词:

摘要: In this paper, we formulate and analyse exponential integrations when applied to nonlinear Schrodinger equations in a normal or highly oscillatory regime. A kind of integrators with energy preservation, optimal convergence long time near conservations actions, momentum density will be formulated analysed. To end, derive continuous-stage show that the can exactly preserve Hamiltonian systems. Three practical energy-preserving are presented. It is shown these exhibit have over times. numerical experiment carried out support all theoretical results presented paper. Some applications other kinds ordinary/partial differential also

参考文章(50)
Stéphane Balac, Arnaud Fernandez, Fabrice Mahé, Florian Méhats, Rozenn Texier-Picard, The Interaction Picture method for solving the generalized nonlinear Schrödinger equation in optics Mathematical Modelling and Numerical Analysis. ,vol. 50, pp. 945- 964 ,(2016) , 10.1051/M2AN/2015060
Emmanuel Frénod, Sever A. Hirstoaga, Mathieu Lutz, Eric Sonnendrücker, Long Time Behaviour of an Exponential Integrator for a Vlasov-Poisson System with Strong Magnetic Field Communications in Computational Physics. ,vol. 18, pp. 263- 296 ,(2015) , 10.4208/CICP.070214.160115A
B. Cano, A. González-Pachón, Exponential time integration of solitary waves of cubic Schrödinger equation Applied Numerical Mathematics. ,vol. 91, pp. 26- 45 ,(2015) , 10.1016/J.APNUM.2015.01.001
Ludwig Gauckler, Christian Lubich, Splitting Integrators for Nonlinear Schrödinger Equations Over Long Times Foundations of Computational Mathematics. ,vol. 10, pp. 275- 302 ,(2010) , 10.1007/S10208-010-9063-3
Håvard Berland, Alvaro L. Islas, Constance M. Schober, Conservation of phase space properties using exponential integrators on the cubic Schrödinger equation Journal of Computational Physics. ,vol. 225, pp. 284- 299 ,(2007) , 10.1016/J.JCP.2006.11.030
Ernst Hairer, Christian Lubich, Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations SIAM Journal on Numerical Analysis. ,vol. 38, pp. 414- 441 ,(2000) , 10.1137/S0036142999353594
Christophe Besse, Brigitte Bidégaray, Stéphane Descombes, Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation SIAM Journal on Numerical Analysis. ,vol. 40, pp. 26- 40 ,(2002) , 10.1137/S0036142900381497
David Cohen, Ludwig Gauckler, One-stage exponential integrators for nonlinear Schrödinger equations over long times Bit Numerical Mathematics. ,vol. 52, pp. 877- 903 ,(2012) , 10.1007/S10543-012-0385-1
Ioan Bejenaru, Terence Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation Journal of Functional Analysis. ,vol. 233, pp. 228- 259 ,(2006) , 10.1016/J.JFA.2005.08.004