Trypanothione reductase inhibition and anti-leishmanial activity of all-hydrocarbon stapled α-helical peptides with improved proteolytic stability.

作者: Marta Ruiz-Santaquiteria , Sonia de Castro , Miguel A. Toro , Héctor de Lucio , Kilian Jesús Gutiérrez

DOI: 10.1016/J.EJMECH.2018.02.071

关键词:

摘要: Abstract Trypanothione reductase (TryR) is a well-established target in the search for novel antitrypanosomal and antileishmanial agents. We have previously identified linear lactam-bridged 13-residue peptides derived from an α-helical region making up part of dimeric interface Leishmania infantum TryR (Li-TryR) which prevent trypanothione reduction by disrupting enzyme dimerization. now show that i,i + 4 side-chain cross-linking with all-hydrocarbon staple stabilizes helical structure these significantly improves their resistance to protease cleavage relative previous cyclic lactam analogues. Interestingly, replacement amide bridge hydrocarbon at same cyclization positions generates derivatives (2 3) similarly inhibit oxidoreductase activity but unexpectedly stabilize homodimer. The most proteolytically stable peptide 2 covalently linked oligoarginines displayed potent in vitro leishmanicidal against L. infantum parasites.

参考文章(43)
Adelene Y. L. Sim, Chandra Verma, How does a hydrocarbon staple affect peptide hydrophobicity Journal of Computational Chemistry. ,vol. 36, pp. 773- 784 ,(2015) , 10.1002/JCC.23859
Timothy A. Hill, Nicholas E. Shepherd, Frederik Diness, David P. Fairlie, Constraining Cyclic Peptides To Mimic Protein Structure Motifs Angewandte Chemie. ,vol. 53, pp. 13020- 13041 ,(2014) , 10.1002/ANIE.201401058
Loren D Walensky, Andrew L Kung, Iris Escher, Thomas J Malia, Scott Barbuto, Renee D Wright, Gerhard Wagner, Gregory L Verdine, Stanley J Korsmeyer, Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix Science. ,vol. 305, pp. 1466- 1470 ,(2004) , 10.1126/SCIENCE.1099191
L.S.C. Bernardes, C.L. Zani, I. Carvalho, Trypanosomatidae diseases: from the current therapy to the efficacious role of trypanothione reductase in drug discovery. Current Medicinal Chemistry. ,vol. 20, pp. 2673- 2696 ,(2013) , 10.2174/0929867311320210005
Kurt Wüthrich, Martin Billeter, Werner Braun, Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. Journal of Molecular Biology. ,vol. 180, pp. 715- 740 ,(1984) , 10.1016/0022-2836(84)90034-2
A. Fairlamb, P Blackburn, P Ulrich, B. Chait, A Cerami, Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids Science. ,vol. 227, pp. 1485- 1487 ,(1985) , 10.1126/SCIENCE.3883489
María Isabel García-Aranda, Susana González-López, Clara María Santiveri, Nathalie Gagey-Eilstein, Marie Reille-Seroussi, Mercedes Martín-Martínez, Nicolas Inguimbert, Michel Vidal, María Teresa García-López, María Angeles Jiménez, Rosario González-Muñiz, María Jesús Pérez de Vega, Helical peptides from VEGF and Vammin hotspots for modulating the VEGF-VEGFR interaction Organic and Biomolecular Chemistry. ,vol. 11, pp. 1896- 1905 ,(2013) , 10.1039/C3OB27312A
Qian Chu, Raymond E. Moellering, Gerard J. Hilinski, Young-Woo Kim, Tom N. Grossmann, Johannes T.-H. Yeh, Gregory L. Verdine, Towards understanding cell penetration by stapled peptides MedChemComm. ,vol. 6, pp. 111- 119 ,(2015) , 10.1039/C4MD00131A
Christopher J. White, Andrei K. Yudin, Contemporary strategies for peptide macrocyclization Nature Chemistry. ,vol. 3, pp. 509- 524 ,(2011) , 10.1038/NCHEM.1062