Mixed virtual element methods for elastodynamics with weak symmetry

作者: Baiju Zhang , Yan Yang , Minfu Feng

DOI: 10.1016/J.CAM.2018.12.020

关键词:

摘要: Abstract We propose and analyze a mixed virtual element method for linear elastodynamics in velocity–stress formulation with weak symmetry. In this formulation, the symmetry of stress is relaxed by rotation displacement, system second order differential equation time reduced to first equations introducing velocity. The proposed uses H ( div ) -conforming space k ≥ 1 discontinuous piecewise-polynomial spaces degree velocity rotation. For discretization, we use Crank–Nicolson scheme. Both semidiscrete fully discrete error estimates are robust nearly incompressible materials. Numerical experiments confirm our theoretical predictions.

参考文章(51)
David S. Malkus, Thomas J.R. Hughes, Mixed finite element methods—reduced and selective integration techniques: a unification of concepts Computer Methods in Applied Mechanics and Engineering. ,vol. 15, pp. 63- 81 ,(1990) , 10.1016/0045-7825(78)90005-1
E. A.de Souza Neto, F. M. Andrade Pires, D. R. J. Owen, F‐bar‐based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking International Journal for Numerical Methods in Engineering. ,vol. 62, pp. 353- 383 ,(2005) , 10.1002/NME.1187
Junping Wang, Xiu Ye, A weak Galerkin finite element method for second-order elliptic problems Journal of Computational and Applied Mathematics. ,vol. 241, pp. 103- 115 ,(2013) , 10.1016/J.CAM.2012.10.003
Syvert Paul Norsett, Ernst Hairer, Gerhard Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems ,(1987)
Eugene L. Wachspress, Barycentric coordinates for polytopes Computers & Mathematics With Applications. ,vol. 61, pp. 3319- 3321 ,(2011) , 10.1016/J.CAMWA.2011.04.032
L. Beira͂o da Veiga, F. Brezzi, L. D. Marini, Virtual Elements for Linear Elasticity Problems SIAM Journal on Numerical Analysis. ,vol. 51, pp. 794- 812 ,(2013) , 10.1137/120874746
L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, The Hitchhiker's Guide to the Virtual Element Method Mathematical Models and Methods in Applied Sciences. ,vol. 24, pp. 1541- 1573 ,(2014) , 10.1142/S021820251440003X
David Mora, Gonzalo Rivera, Rodolfo Rodríguez, A virtual element method for the Steklov eigenvalue problem Mathematical Models and Methods in Applied Sciences. ,vol. 25, pp. 1421- 1445 ,(2015) , 10.1142/S0218202515500372
Jim Douglas, Chaitan P. Gupta, Superconvergence for a mixed finite element method for elastic wave propagation in a plane domain Numerische Mathematik. ,vol. 49, pp. 189- 202 ,(1986) , 10.1007/BF01389623
N.C. Nguyen, J. Peraire, B. Cockburn, High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics Journal of Computational Physics. ,vol. 230, pp. 3695- 3718 ,(2011) , 10.1016/J.JCP.2011.01.035