Representation of complex-valued neural networks: a real-valued approach

作者: S. Ray , R.N. Yadav , P.K. Kalra , A. Yadav , D. Mishra

DOI: 10.1109/ICISIP.2005.1529471

关键词:

摘要: A methodology for representing a complex-valued multilayer artificial neural network and its backpropagation learning algorithm in terms of real-valued has been discussed. The performance the proposed method tested on XOR problem power system load flow problems.

参考文章(6)
N. Benvenuto, F. Piazza, On the complex backpropagation algorithm IEEE Transactions on Signal Processing. ,vol. 40, pp. 967- 969 ,(1992) , 10.1109/78.127967
H. Leung, S. Haykin, The complex backpropagation algorithm IEEE Transactions on Signal Processing. ,vol. 39, pp. 2101- 2104 ,(1991) , 10.1109/78.134446
Deng Jianping, Narasimhan Sundararajan, P. Saratchandran, Communication channel equalization using complex-valued minimal radial basis function neural networks IEEE Transactions on Neural Networks. ,vol. 13, pp. 687- 696 ,(2002) , 10.1109/TNN.2002.1000133
A. Uncini, L. Vecci, P. Campolucci, F. Piazza, Complex-valued neural networks with adaptive spline activation function for digital-radio-links nonlinear equalization IEEE Transactions on Signal Processing. ,vol. 47, pp. 505- 514 ,(1999) , 10.1109/78.740133
Tohru Nitta, An extension of the back-propagation algorithm to complex numbers Neural Networks. ,vol. 10, pp. 1391- 1415 ,(1997) , 10.1016/S0893-6080(97)00036-1
G.M. Georgiou, C. Koutsougeras, Complex domain backpropagation IEEE Transactions on Circuits and Systems Ii: Analog and Digital Signal Processing. ,vol. 39, pp. 330- 334 ,(1992) , 10.1109/82.142037