Avoiding Pitfalls in the Statistical Analysis of Heterogeneous Tumors.

作者: David E. Axelrod , Naomi Miller , Judith-Anne W. Chapman

DOI: 10.4137/BII.S2222

关键词:

摘要: Information about tumors is usually obtained from a single assessment of tumor sample, performed at some point in the course development and progression tumor, with patient characteristics being surrogates for natural history context. Differences between cells within individual (intratumor heterogeneity) different patients (intertumor may mean that small sample not representative as whole, particularly solid which are focus this paper. This issue increasing importance high-throughput technologies generate large multi-feature data sets areas genomics, proteomics, image analysis. Three potential pitfalls statistical analysis discussed (sampling, cut-points, validation) suggestions made how to avoid these pitfalls.

参考文章(65)
Anthony S.-Y. Leong, Raija T. Sormunen, Songkhun Vinyuvat, Regina W. Hamdani, Cheepsumon Suthipintawong, Biologic markers in ductal carcinoma in situ and concurrent infiltrating carcinoma. A comparison of eight contemporary grading systems. American Journal of Clinical Pathology. ,vol. 115, pp. 709- 718 ,(2001) , 10.1309/WBU9-22QN-C3NA-2Q12
Gang Zhu, Louise Reynolds, Tatjana Crnogorac-Jurcevic, Cheryl E Gillett, Edwin A Dublin, John F Marshall, Diana Barnes, Corrado D'Arrigo, Philippe O Van Trappen, Nicholas R Lemoine, Ian R Hart, Combination of microdissection and microarray analysis to identify gene expression changes between differentially located tumour cells in breast cancer Oncogene. ,vol. 22, pp. 3742- 3748 ,(2003) , 10.1038/SJ.ONC.1206428
Sunil Badve, Roger P A'hern, Ann M Ward, Rosemary R Millis, Sarah E Pinder, Ian O Ellis, Barry A Gusterson, John P Sloane, Prediction of local recurrence of ductal carcinoma in situ of the breast using five histological classifications: A comparative study with long follow-up Human Pathology. ,vol. 29, pp. 915- 923 ,(1998) , 10.1016/S0046-8177(98)90196-4
Rodrigo Fernandez-Gonzalez, Mary Helen Barcellos-Hoff, Carlos Ortiz-de-Sol�rzano, Quantitative image analysis in mammary gland biology. Journal of Mammary Gland Biology and Neoplasia. ,vol. 9, pp. 343- 359 ,(2004) , 10.1007/S10911-004-1405-9
G. L. ANDERSON, T. R. FLEMING, Model misspecification in proportional hazards regression Biometrika. ,vol. 82, pp. 527- 541 ,(1995) , 10.1093/BIOMET/82.3.527
V Canzonieri, S Monfardini, A Carbone, Defining Prognostic Factors in Malignancies Through Image Analysis European Journal of Cancer. ,vol. 34, pp. 451- 458 ,(1998) , 10.1016/S0959-8049(97)10017-X
D. G. Altman, B. Lausen, W. Sauerbrei, M. Schumacher, Dangers of using "optimal" cutpoints in the evaluation of prognostic factors. Journal of the National Cancer Institute. ,vol. 86, pp. 829- 835 ,(1994) , 10.1093/JNCI/86.11.829
Antonio Nocito, Juha Kononen, Olli-P. Kallioniemi, Guido Sauter, Tissue microarrays (TMAs) for high-throughput molecular pathology research. International Journal of Cancer. ,vol. 94, pp. 1- 5 ,(2001) , 10.1002/IJC.1385
J.W. Chapman, B.G. Mobbs, D.R. McCready, H.L.A. Lickley, M.E. Trudeau, W. Hanna, H.J. Kahn, C.A. Sawka, E.B. Fish, K.I. Pritchard, An investigation of cut-points for primary breast cancer oestrogen and progesterone receptor assays. The Journal of Steroid Biochemistry and Molecular Biology. ,vol. 57, pp. 323- 328 ,(1996) , 10.1016/0960-0760(95)00275-8
C. E. Gillett, R. J. Springall, D. M. Barnes, A. M. Hanby, Multiple tissue core arrays in histopathology research: a validation study. The Journal of Pathology. ,vol. 192, pp. 549- 553 ,(2000) , 10.1002/1096-9896(2000)9999:9999<::AID-PATH721>3.0.CO;2-0