Automatic gait optimization with Gaussian process regression

作者: Dale Schuurmans , Michael Bowling , Daniel Lizotte , Tao Wang

DOI:

关键词:

摘要: Gait optimization is a basic yet challenging problem for both quadrupedal and bipedal robots. Although techniques automating the process exist, most involve local function procedures that suffer from three key drawbacks. Local are naturally plagued by optima, make no use of expensive gait evaluations once step taken, do not explicitly model noise in evaluation. These drawbacks increase need large number evaluations, making slow, data inefficient, manually intensive. We present Bayesian approach based on Gaussian regression addresses all It uses global search strategy posterior inferred individual noisy evaluations. demonstrate technique quadruped robot, using it to optimize two different criteria: speed smoothness. show cases our requires dramatically fewer than state-of-the-art gradient approaches.

参考文章(13)
Min Sub Kim, William Uther, Automatic Gait Optimisation for Quadruped Robots ,(2003)
Jonas Mockus, Global Optimization and the Bayesian Approach Springer Netherlands. pp. 1- 3 ,(1989) , 10.1007/978-94-009-0909-0_1
O. Hanagata, M. Fujita, S. Takamura, G. S. Hornby, T. Yamamoto, Autonomous evolution of gaits with the Sony Quadruped Robot genetic and evolutionary computation conference. pp. 1297- 1304 ,(1999)
C. K. I. Williams, Prediction with Gaussian processes: from linear regression to linear prediction and beyond Proceedings of the NATO Advanced Study Institute on Learning in graphical models. pp. 599- 621 ,(1999) , 10.1007/978-94-011-5014-9_23
Christopher K I Williams, Carl Edward Rasmussen, Gaussian Processes for Machine Learning ,(2005)
J. Mockus, The Bayesian approach to global optimization System Modeling and Optimization. pp. 473- 481 ,(1989) , 10.1007/BFB0006170
Tao Wang, Daniel Lizotte, Michael Bowling, Dale Schuurmans, Bayesian sparse sampling for on-line reward optimization Proceedings of the 22nd international conference on Machine learning - ICML '05. pp. 956- 963 ,(2005) , 10.1145/1102351.1102472
G.S. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto, M. Fujita, Evolving robust gaits with AIBO international conference on robotics and automation. ,vol. 3, pp. 3040- 3045 ,(2000) , 10.1109/ROBOT.2000.846489
Vladimir Kolmogorov, Ramin Zabih, Graph based algorithms for scene reconstruction from two or more views Doctoral thesis, UNSPECIFIED.. ,(2004)
Nate Kohl, Peter Stone, Machine learning for fast quadrupedal locomotion national conference on artificial intelligence. pp. 611- 616 ,(2004)