Effect of the Spherical Indenter Tip Assumption on the Initial Plastic Yield Stress

作者: Li Ma , Lyle Levine , Ron Dixson , Douglas Smith , David Bahr

DOI: 10.5772/48106

关键词:

摘要: Nanoindentation is widely used to explore the mechanical properties of small volumes materials. For crystalline materials, there a growing experimental and theoretical interest in pop-in events, which are sudden displacement-burst excursions during load-controlled nanoindentation relatively dislocation-free metals. The first event often identified as initiation dislocation nucleation, thus transition from purely elastic elastic/plastic deformation. maximum shear stress at this event, or onset plastic yielding, generally found be close strength material frequently estimated Hertzian contact theory. However, an irregular indenter tip shape will significantly change distribution magnitude location, therefore stress, estimation. aim chapter state challenges limitations for extracting initial yield with spherical assumption. We assess possible errors pitfalls estimation nanoscale.

参考文章(67)
Dylan J. Morris, Cleaning of diamond nanoindentation probes with oxygen plasma and carbon dioxide snow Review of Scientific Instruments. ,vol. 80, pp. 126102- ,(2009) , 10.1063/1.3266972
J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, P. Munroe, Nanoindentation-induced deformation of Ge Applied Physics Letters. ,vol. 80, pp. 2651- 2653 ,(2002) , 10.1063/1.1469660
Cynthia L. Kelchner, S. J. Plimpton, J. C. Hamilton, Dislocation nucleation and defect structure during surface indentation Physical Review B. ,vol. 58, pp. 11085- 11088 ,(1998) , 10.1103/PHYSREVB.58.11085
A.M. Minor, E.T. Lilleodden, E.A. Stach, J.W. Morris, Direct observations of incipient plasticity during nanoindentation of Al Journal of Materials Research. ,vol. 19, pp. 176- 182 ,(2004) , 10.1557/JMR.2004.19.1.176
M A Tschopp, D E Spearot, D L McDowell, Atomistic simulations of homogeneous dislocation nucleation in single crystal copper Modelling and Simulation in Materials Science and Engineering. ,vol. 15, pp. 693- 709 ,(2007) , 10.1088/0965-0393/15/7/001
Jae-il Jang, M.J. Lance, Songqing Wen, Ting Y. Tsui, G.M. Pharr, Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior Acta Materialia. ,vol. 53, pp. 1759- 1770 ,(2005) , 10.1016/J.ACTAMAT.2004.12.025
L. Chang, L.C. Zhang, Deformation mechanisms at pop-out in monocrystalline silicon under nanoindentation Acta Materialia. ,vol. 57, pp. 2148- 2153 ,(2009) , 10.1016/J.ACTAMAT.2009.01.008
Graham L. W. Cross, André Schirmeisen, Peter Grütter, Urs T. Dürig, Plasticity, healing and shakedown in sharp-asperity nanoindentation. Nature Materials. ,vol. 5, pp. 370- 376 ,(2006) , 10.1038/NMAT1632
S. Suresh, T.-G. Nieh, B.W. Choi, Nano-indentation of copper thin films on silicon substrates Scripta Materialia. ,vol. 41, pp. 951- 957 ,(1999) , 10.1016/S1359-6462(99)00245-6
Izabela Szlufarska, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta, A molecular dynamics study of nanoindentation of amorphous silicon carbide Journal of Applied Physics. ,vol. 102, pp. 023509- ,(2007) , 10.1063/1.2756059