Threshold phenomenon and traveling waves for heterogeneous integral equations and epidemic models

作者: Romain Ducasse

DOI:

关键词:

摘要: We study some anisotropic heterogeneous nonlinear integral equations arising in epidemiology. We focus on the case where the heterogeneities are spatially periodic. In the …

参考文章(23)
Mark Grigorievich Krein, None, Linear operators leaving invariant a cone in a Banach space Amer. Math. Soc. Transl. Ser. I. ,vol. 10, pp. 199- 325 ,(1950)
O. Diekmann, Thresholds and travelling waves for the geographical spread of infection. Journal of Mathematical Biology. ,vol. 6, pp. 109- 130 ,(1978) , 10.1007/BF02450783
D. Breda, O. Diekmann, W. F. de Graaf, A. Pugliese, R. Vermiglio, On the formulation of epidemic models (an appraisal of Kermack and McKendrick) Journal of Biological Dynamics. ,vol. 6, pp. 103- 117 ,(2012) , 10.1080/17513758.2012.716454
H. R. Thieme, A model for the spatial spread of an epidemic Journal of Mathematical Biology. ,vol. 4, pp. 337- 351 ,(1977) , 10.1007/BF00275082
Xavier Cabré, Jean-Michel Roquejoffre, The Influence of Fractional Diffusion in Fisher-KPP Equations Communications in Mathematical Physics. ,vol. 320, pp. 679- 722 ,(2013) , 10.1007/S00220-013-1682-5
YUZO HOSONO, BILAL ILYAS, TRAVELING WAVES FOR A SIMPLE DIFFUSIVE EPIDEMIC MODEL Mathematical Models and Methods in Applied Sciences. ,vol. 05, pp. 935- 966 ,(1995) , 10.1142/S0218202595000504
Contributions to the Mathematical Theory of Epidemics. III. Further Studies of the Problem of Endemicity Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 141, pp. 94- 122 ,(1933) , 10.1098/RSPA.1933.0106
D.G Aronson, H.F Weinberger, Multidimensional nonlinear diffusion arising in population genetics Advances in Mathematics. ,vol. 30, pp. 33- 76 ,(1978) , 10.1016/0001-8708(78)90130-5