Some theoretical properties of an augmented lagrangian merit function

作者: Walter Murray , Philip E Gill , Michael A Saunders , Margaret H Wright

DOI:

关键词:

摘要: Sequential quadratic programming (SQP) methods for nonlinearly constrained optimization typically use of a merit function to enforce convergence from an arbitrary starting point. We define smooth augmented Lagrangian in which the Lagrange multiplier estimate is treated as separate variable, and inequality constraints are handled by means non-negative slack variables that included linesearch. Global proved SQP algorithm uses function. It also prove, steps unity accepted neighborhood solution when this used suitable superlinearly convergent algorithm. Finally, selection numerical results presented illustrate performance associated method. 36 refs., 1 tab.

参考文章(28)
R. M. Chamberlain, M. J. D. Powell, C. Lemarechal, H. C. Pedersen, The watchdog technique for forcing convergence in algorithms for constrained optimization Mathematical Programming Studies. pp. 1- 17 ,(1982) , 10.1007/BFB0120945
M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations Springer Berlin Heidelberg. pp. 144- 157 ,(1978) , 10.1007/BFB0067703
Algorithms for constrained minimization of smooth nonlinear functions North-Holland , Sole distributors for the U.S.A. and Canada, Elsevier Science. ,(1982) , 10.1007/BFB0120944
M. J. D. Powell, Variable Metric Methods for Constrained Optimization Mathematical Programming The State of the Art. pp. 288- 311 ,(1983) , 10.1007/978-3-642-68874-4_12
J. J. More, D. C. Sorensen, Newton's Method Argonne National Laboratory. ,(1982) , 10.2172/5326201
G. Di Pillo, L. Grippo, A New Class of Augmented Lagrangians in Nonlinear Programming SIAM Journal on Control and Optimization. ,vol. 17, pp. 618- 628 ,(1979) , 10.1137/0317044
S. -P. Han, O. L. Mangasarian, Exact penalty functions in nonlinear programming Mathematical Programming. ,vol. 17, pp. 251- 269 ,(1979) , 10.1007/BF01588250