Convergence Rate for a Radau hp Collocation Method Applied to Constrained Optimal Control

作者: William W. Hager , Anil V. Rao , Hongyan Hou , Subhashree Mohapatra

DOI:

关键词:

摘要: For unconstrained control problems, a local convergence rate is established for an $hp$-method based on collocation at the Radau quadrature points in each mesh interval of discretization. If continuous problem has sufficiently smooth solution and Hamiltonian satisfies strong convexity condition, then discrete possesses minimizer neighborhood solution, as either number or intervals increase, convergences to sup-norm. The exponentially fast with respect degree polynomials interval, while error bounded by polynomial spacing. An advantage $hp$-scheme over global that there guarantee when small, result requires norm linearized dynamics small. Numerical examples explore theory.

参考文章(39)
Gamal N. Elnagar, Mohammad A. Kazemi, Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems Computational Optimization and Applications. ,vol. 11, pp. 195- 217 ,(1998) , 10.1023/A:1018694111831
Fengjin Liu, William W. Hager, Anil V. Rao, Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction Journal of The Franklin Institute-engineering and Applied Mathematics. ,vol. 352, pp. 4081- 4106 ,(2015) , 10.1016/J.JFRANKLIN.2015.05.028
William W. Hager, Numerical Analysis in Optimal Control Birkhäuser, Basel. pp. 83- 93 ,(2001) , 10.1007/978-3-0348-8148-7_7
Michael A. Patterson, William W. Hager, Anil V. Rao, A ph mesh refinement method for optimal control Optimal Control Applications & Methods. ,vol. 36, pp. 398- 421 ,(2015) , 10.1002/OCA.2114
Fariba Fahroo, I. Michael Ross, Direct Trajectory Optimization by a Chebyshev Pseudospectral Method Journal of Guidance, Control, and Dynamics. ,vol. 25, pp. 160- 166 ,(2002) , 10.2514/2.4862
Divya Garg, Michael A. Patterson, Camila Francolin, Christopher L. Darby, Geoffrey T. Huntington, William W. Hager, Anil V. Rao, Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method Computational Optimization and Applications. ,vol. 49, pp. 335- 358 ,(2011) , 10.1007/S10589-009-9291-0
P. Vértesi, On lagrange interpolation Periodica Mathematica Hungarica. ,vol. 12, pp. 103- 112 ,(1981) , 10.1007/BF01849700
William W. Hager, Multiplier methods for nonlinear optimal control SIAM Journal on Numerical Analysis. ,vol. 27, pp. 1061- 1080 ,(1990) , 10.1137/0727063
A.L. Dontchev, William W. Hager, A new approach to Lipschitz continuity in state constrained optimal control Systems & Control Letters. ,vol. 35, pp. 137- 143 ,(1998) , 10.1016/S0167-6911(98)00043-7
Asen L. Dontchev, William W. Hager, Lipschitzian stability in nonlinear control and optimization Siam Journal on Control and Optimization. ,vol. 31, pp. 569- 603 ,(1993) , 10.1137/0331026