The Bathe time integration method with controllable spectral radius: The ρ∞-Bathe method

作者: Gunwoo Noh , Klaus-Jürgen Bathe

DOI: 10.1016/J.COMPSTRUC.2018.11.001

关键词:

摘要: Abstract We consider the Bathe implicit time integration method and focus on step splitting ratio spectral radius at large steps to improve generalize scheme. The objective is be able prescribe amplitude decay (dissipation) period elongation (dispersion) for numerical integration, achieve this aim in a direct optimum manner with minimum number of parameters. show that use effective smooth no very decays, correspondingly small elongations while maintaining second-order accuracy. analyze effects stability accuracy scheme illustrate these parameters comparison previously published methods. Furthermore, we proper setting more accurate results may obtained some analyses.

参考文章(23)
Karl F. Graff, Wave Motion in Elastic Solids ,(1975)
K. J. Bathe, E. L. Wilson, Stability and accuracy analysis of direct integration methods Earthquake Engineering & Structural Dynamics. ,vol. 1, pp. 283- 291 ,(1972) , 10.1002/EQE.4290010308
X. Zhou, K. K. Tamma, Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics International Journal for Numerical Methods in Engineering. ,vol. 59, pp. 597- 668 ,(2004) , 10.1002/NME.873
Gunwoo Noh, Klaus-Jürgen Bathe, An explicit time integration scheme for the analysis of wave propagations Computers & Structures. ,vol. 129, pp. 178- 193 ,(2013) , 10.1016/J.COMPSTRUC.2013.06.007
José María Benítez, Francisco Javier Montáns, The value of numerical amplification matrices in time integration methods Computers & Structures. ,vol. 128, pp. 243- 250 ,(2013) , 10.1016/J.COMPSTRUC.2013.07.001
Klaus-Jürgen Bathe, Gunwoo Noh, Insight into an implicit time integration scheme for structural dynamics Computers & Structures. ,vol. 98, pp. 1- 6 ,(2012) , 10.1016/J.COMPSTRUC.2012.01.009
E. L. Wilson, I. Farhoomand, K. J. Bathe, Nonlinear dynamic analysis of complex structures Earthquake Engineering & Structural Dynamics. ,vol. 1, pp. 241- 252 ,(1972) , 10.1002/EQE.4290010305
J. Chung, G. M. Hulbert, A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method Journal of Applied Mechanics. ,vol. 60, pp. 371- 375 ,(1993) , 10.1115/1.2900803
Klaus-Jürgen Bathe, Mirza M. Irfan Baig, On a composite implicit time integration procedure for nonlinear dynamics Computers & Structures. ,vol. 83, pp. 2513- 2524 ,(2005) , 10.1016/J.COMPSTRUC.2005.08.001