Free vibration analysis of rotating beams with random properties

作者: S.A.A. Hosseini , S.E. Khadem

DOI: 10.12989/SEM.2005.20.3.293

关键词:

摘要: In this paper, free vibration of rotating beam with random properties is studied. The cross-sectional area, elasticity modulus, moment inertia, shear modulus and density are modeled as fields the rotational speed a variable. To study uncertainty, stochastic finite element method based on second order perturbation applied. discretize fields, three methods midpoint, interpolation local average applied compared. effects speed, setting angle, property variances, discretization scheme, number elements, correlation function form length "Coefficient Variation" (C.O.V.) first mode eigenvalue investigated completely. determine significant variation sensitivity analysis performed. results studied for both Timoshenko Bernoulli-Euler beam. It shown that C.O.V. beams approximately identical. Also, compared to uncorrelated correlated case has larger value. Another important result is, where small, convergence rate lower more elements necessary final response.

参考文章(14)
S.M. Yang, S.M. Tsao, Dynamics of a pretwisted blade under nonconstant rotating speed Computers & Structures. ,vol. 62, pp. 643- 651 ,(1997) , 10.1016/S0045-7949(96)00227-1
Sen Yung Lee, Shueei Muh Lin, Bending Vibrations of Rotating Nonuniform Timoshenko Beams With an Elastically Restrained Root Journal of Applied Mechanics. ,vol. 61, pp. 949- 955 ,(1994) , 10.1115/1.2901584
Wilfred D. Iwan, Huang Ching-Tung, On the dynamic response of non-linear systems with parameter uncertainties International Journal of Non-linear Mechanics. ,vol. 31, pp. 631- 645 ,(1996) , 10.1016/0020-7462(96)00027-3
T. Yokoyama, Free vibration characteristics of rotating Timoshenko beams International Journal of Mechanical Sciences. ,vol. 30, pp. 743- 755 ,(1988) , 10.1016/0020-7403(88)90039-2
Shyh-Chang Lin, The probabilistic approach for rotating Timoshenko beams International Journal of Solids and Structures. ,vol. 38, pp. 7197- 7213 ,(2001) , 10.1016/S0020-7683(00)00326-7
Naresh K. Chandiramani, Chandrashekhar D. Shete, Liviu I. Librescu, Vibration of higher-order-shearable pretwisted rotating composite blades International Journal of Mechanical Sciences. ,vol. 45, pp. 2017- 2041 ,(2003) , 10.1016/J.IJMECSCI.2004.02.001
Erik Vanmarcke, Mircea Grigoriu, STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS Journal of Engineering Mechanics-asce. ,vol. 109, pp. 1203- 1214 ,(1983) , 10.1061/(ASCE)0733-9399(1983)109:5(1203)
A. Bazoune, Y.A. Khulief, N.G. Stephen, M.A. Mohiuddin, Dynamic response of spinning tapered Timoshenko beams using modal reduction Finite Elements in Analysis and Design. ,vol. 37, pp. 199- 219 ,(2001) , 10.1016/S0168-874X(00)00030-5
S. Chakraborty, S.S. Dey, A stochastic finite element dynamic analysis of structures with uncertain parameters International Journal of Mechanical Sciences. ,vol. 40, pp. 1071- 1087 ,(1998) , 10.1016/S0020-7403(98)00006-X
B.O. AL-BEDOOR, M.N. HAMDAN, Geometrically Non-Linear Dynamic Model of a Rotating Flexible Arm Journal of Sound and Vibration. ,vol. 240, pp. 59- 72 ,(2001) , 10.1006/JSVI.2000.3199