3D motion recovery via affine epipolar geometry

作者: Larry S. Shapiro , Andrew Zisserman , Michael Brady

DOI: 10.1007/BF01539553

关键词:

摘要: Algorithms to perform point-based motion estimation under orthographic and scaled projection abound in the literature. A key limitation of many existing algorithms is that they operate on minimum amount data required, often requiring selection a suitable minimal set from available serve as “local coordinate frame”. Such approaches are extremely sensitive errors noise set, forfeit advantages using full set. Furthermore, attention seldom paid statistical performance algorithms.

参考文章(43)
Arthur Gelb, Applied Optimal Estimation ,(1974)
John Aloimonos, Amit Bandyopadhyay, Perception of Structure from Motion: Lower Bound Results ,(1985)
Théodore Papadopoulo, Quang-Tuan Luong, Rachid Deriche, Olivier Faugeras, On determining the fundamental matrix : analysis of different methods and experimental results INRIA. ,(1993)
Olivier D. Faugeras, What can be seen in three dimensions with an uncalibrated stereo rig european conference on computer vision. pp. 563- 578 ,(1992) , 10.1007/3-540-55426-2_61
P. A. Beardsley, A. Zisserman, D. W. Murray, Navigation using Affine Structure from Motion european conference on computer vision. pp. 85- 96 ,(1994) , 10.1007/BFB0028337
Joseph L. Mundy, Andrew Zisserman, Geometric invariance in computer vision MIT Press. ,(1992)
Søren I. Olsen, Epipolar line estimation Computer Vision — ECCV'92. pp. 307- 311 ,(1992) , 10.1007/3-540-55426-2_35
Larry S. Shapiro, Affine Analysis of Image Sequences ,(1995)
Larry S. Shapiro, Andrew Zisserman, Michael Brady, Motion From Point Matches Using Affine Epipolar Geometry european conference on computer vision. pp. 73- 84 ,(1994) , 10.1007/BFB0028336
H. C. Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections Nature. ,vol. 293, pp. 61- 62 ,(1987) , 10.1038/293133A0