Negative dimensions: Theory, computation, and experiment

作者: Ashvin B. Chhabra , K. R. Sreenivasan

DOI: 10.1103/PHYSREVA.43.1114

关键词:

摘要: Negative dimensions in probabilistic fractal measures are analyzed using the concept of level-independent multiplier distributions. By suitably manipulating these distributions we compute positive and negative parts f(\ensuremath{\alpha}) function. It is demonstrated that method extracts function with exponentially less work, it more accurate than conventional box-counting methods. The utility this by applying to a binary cascade triangular distribution dissipation field fully developed turbulence.

参考文章(15)
Thomas C. Halsey, Mogens H. Jensen, Leo P. Kadanoff, Itamar Procaccia, Boris I. Shraiman, Fractal measures and their singularities: The characterization of strange sets Physical Review A. ,vol. 33, pp. 1141- 1151 ,(1986) , 10.1103/PHYSREVA.33.1141
Ashvin Chhabra, Roderick V. Jensen, Direct determination of the f(α) singularity spectrum Physical Review Letters. ,vol. 62, pp. 1327- 1330 ,(1989) , 10.1103/PHYSREVLETT.62.1327
Ashvin B. Chhabra, Charles Meneveau, Roderick V. Jensen, K. R. Sreenivasan, Direct determination of the f( alpha ) singularity spectrum and its application to fully developed turbulence. Physical Review A. ,vol. 40, pp. 5284- 5294 ,(1989) , 10.1103/PHYSREVA.40.5284
JOSEPH L. McCAULEY, MULTIFRACTAL DESCRIPTION OF THE STATISTICAL EQUILIBRIUM OF CHAOTIC DYNAMICAL SYSTEMS International Journal of Modern Physics B. ,vol. 03, pp. 821- 852 ,(1989) , 10.1142/S0217979289000610
C. Meneveau, K.R. Sreenivasan, The multifractal spectrum of the dissipation field in turbulent flows Nuclear Physics B (Proceedings Supplements). ,vol. 2, pp. 49- 76 ,(1987) , 10.1016/0920-5632(87)90008-9
Benoit B. Mandelbrot, Fractals in Physics: Squig Clusters, Diffusions, Fractal Measures, and the Unicity of Fractal Dimensionality Journal of Statistical Physics. ,vol. 34, pp. 895- 930 ,(1984) , 10.1007/BF01009448
Raphael Blumenfeld, Amnon Aharony, Breakdown of multifractal behavior in diffusion-limited aggregates. Physical Review Letters. ,vol. 62, pp. 2977- 2980 ,(1989) , 10.1103/PHYSREVLETT.62.2977
Paul A. Trunfio, Preben Alstrm, Exponentially small growth probabilities in diffusion-limited aggregation. Physical Review B. ,vol. 41, pp. 896- 898 ,(1990) , 10.1103/PHYSREVB.41.896
S. Schwarzer, J. Lee, A. Bunde, S. Havlin, H. E. Roman, H. E. Stanley, Minimum growth probability of diffusion-limited aggregates. Physical Review Letters. ,vol. 65, pp. 603- 606 ,(1990) , 10.1103/PHYSREVLETT.65.603
M. E. Cates, T. A. Witten, Diffusion near absorbing fractals: Harmonic measure exponents for polymers Physical Review A. ,vol. 35, pp. 1809- 1824 ,(1987) , 10.1103/PHYSREVA.35.1809