Markov Processes and Discrete Multifractals

作者: Qiuming Cheng

DOI: 10.1023/A:1007594709250

关键词:

摘要: Fractals and multifractals are a natural consequence of self-similarity resulting from scale-independent processes. Multifractals spatially intertwined fractals which can be further grouped into two classes according to the characteristics their fractal dimension spectra: continuous discrete multifractals. The concept emphasizes spatial associations between spectra. Distinguishing makes it possible describe physical processes multifractal point view. It is shown that multiplicative cascade generate Markov result in latter provides not only theoretical evidence for existence but also fundamental model illustrating general properties Classical prefractal examples used show how asymmetrical process applied sets based on was dataset gold deposits Great Basin, Nevada, USA. were regarded as consisting three interrelated (small, medium, large deposits) yielding dimensions 0.541 small ( 500 tons Au), respectively.

参考文章(23)
Shaun Lovejoy, Daniel Schertzer, Multifractal Analysis Techniques and the Rain and Cloud Fields from 10−3 to 106m Springer Netherlands. pp. 111- 144 ,(1991) , 10.1007/978-94-009-2147-4_8
Frederik P. Agterberg, Fractals, Multifractals, and Change of Support Springer Netherlands. pp. 223- 234 ,(1994) , 10.1007/978-94-011-0824-9_27
D. Lavallée, D. Schertzer, S. Lovejoy, On the Determination of the Codimension Function Springer, Dordrecht. pp. 99- 109 ,(1991) , 10.1007/978-94-009-2147-4_7
Benoit B. Mandelbrot, Carl J. G. Evertsz, 10 Exactly self-similar left-sided multifractals Fractals and disordered systems. pp. 323- 344 ,(1991) , 10.1007/978-3-642-84868-1_10
Robert Andrle, Complexity and scale in geomorphology: Statistical self-similarity vs. characteristic scales Mathematical Geosciences. ,vol. 28, pp. 275- 293 ,(1996) , 10.1007/BF02083201
C. Meneveau, K. R. Sreenivasan, Simple multifractal cascade model for fully developed turbulence. Physical Review Letters. ,vol. 59, pp. 1424- 1427 ,(1987) , 10.1103/PHYSREVLETT.59.1424
Ashvin B. Chhabra, K. R. Sreenivasan, Negative dimensions: Theory, computation, and experiment Physical Review A. ,vol. 43, pp. 1114- 1117 ,(1991) , 10.1103/PHYSREVA.43.1114
Daniel Schertzer, Shaun Lovejoy, Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes Journal of Geophysical Research. ,vol. 92, pp. 9693- 9714 ,(1987) , 10.1029/JD092ID08P09693
Quiming Cheng, Frederik P. Agterberg, Multifractal modeling and spatial point processes Mathematical Geosciences. ,vol. 27, pp. 831- 845 ,(1995) , 10.1007/BF02087098
Qiuming Cheng, F.P. Agterberg, S.B. Ballantyne, The separation of geochemical anomalies from background by fractal methods Journal of Geochemical Exploration. ,vol. 51, pp. 109- 130 ,(1994) , 10.1016/0375-6742(94)90013-2