H-, K- and N-Ras inhibit myeloid leukemia cell proliferation by a p21WAF1-dependent mechanism

作者: M Dolores Delgado , J Pedro Vaqué , Imanol Arozarena , Marco A López-Ilasaca , Carlos Martínez

DOI: 10.1038/SJ.ONC.1203384

关键词:

摘要: Mutated ras genes are frequently found in human cancer. However, it has been shown that oncogenic inhibits growth of primary cells, through pathways involving p53 and the cell cycle inhibitors p16INK4a p19ARF. We have analysed effect ectopic expression three mammalian on proliferation K562 leukemia which deficient for p53, p16INK4a, p15INK4b p19ARF genes. high levels both wild-type H-, K- N-ras inhibit clonogenic cells. Induction H-rasV12 transfectants retards this is accompanied with an increase p21WAF1 mRNA protein levels. Furthermore, promoter activated potently by less pronounced ras. This induction p53-independent since a devoid responsive elements still Ras. Finally, inhibition antisense construct partially overcomes inhibitory action H-ras. Altogether, these results indicate antiproliferative myeloid cells associated to suggest existence p16INK4a-independent ras-mediated inhibition.

参考文章(33)
Marcos Malumbres, Angel Pellicer, RAS pathways to cell cycle control and cell transformation Frontiers in Bioscience. ,vol. 3, pp. d887- 912 ,(1998) , 10.2741/A331
J. L. Daniotti, Ningzhi Xu, J. Troppmair, P. Crespo, J. S. Gutkind, U. R. Rapp, Signaling through transforming G protein-coupled receptors in NIH 3T3 cells involves c-Raf activation. Evidence for a protein kinase C-independent pathway. Journal of Biological Chemistry. ,vol. 269, pp. 21103- 21109 ,(1994) , 10.1016/S0021-9258(17)31935-X
Ignacio Palmero, Cristina Pantoja, Manuel Serrano, p19ARF links the tumour suppressor p53 to Ras Nature. ,vol. 395, pp. 125- 126 ,(1998) , 10.1038/25870
Michael F. Olson, Hugh F. Paterson, Christopher J. Marshall, Signals from Ras and Rho GTPases interact to regulate expression of p21 Waf1/Cip1 Nature. ,vol. 394, pp. 295- 299 ,(1998) , 10.1038/28425
Piero Crespo, Ningzhi Xu, William F. Simonds, J. Silvio Gutkind, Ras-dependent activation of MAP kinase pathway mediated by G-protein βγ subunits Nature. ,vol. 369, pp. 418- 420 ,(1994) , 10.1038/369418A0
T. Lion, F. Watzinger, R. Becher, K. Pillwein, H. Karlic, A. Gaiger, Absence of N-ras mutations in myeloid and lymphoid blast crisis of chronic myeloid leukemia. Cancer Research. ,vol. 54, pp. 3934- 3938 ,(1994)
M Dolores Delgado, Ana F Quincoces, M Teresa Gomez-Casares, Carlos A Martinez, M Angeles Cuadrado, Richard C, León J, Differential expression of ras protooncogenes during in vitro differentiation of human erythroleukemia cells. Cancer Research. ,vol. 52, pp. 5979- 5984 ,(1992)
Takemi Otsuki, Helen M Clark, Axel Wellmann, Elaine S Jaffe, Mark Raffeld, None, Involvement of CDKN2 (p16INK4A/MTS1) and p15INK4B/MTS2 in Human Leukemias and Lymphomas Cancer Research. ,vol. 55, pp. 1436- 1440 ,(1995)
J H Pierce, S A Aaronson, Myeloid cell transformation by ras-containing murine sarcoma viruses. Molecular and Cellular Biology. ,vol. 5, pp. 667- 674 ,(1985) , 10.1128/MCB.5.4.667
Darrin M. Beaupre, Razelle Kurzrock, RAS and Leukemia: From Basic Mechanisms to Gene-Directed Therapy Journal of Clinical Oncology. ,vol. 17, pp. 1071- 1071 ,(1999) , 10.1200/JCO.1999.17.3.1071