Validating models for disease detection using twitter

作者: Todd Bodnar , Marcel Salathé

DOI: 10.1145/2487788.2488027

关键词:

摘要: Data mining social media has become a valuable resource for infectious disease surveillance. However, there are considerable risks associated with incorrectly predicting an epidemic. The large amount of data combined the small ground truth and general dynamics diseases present unique challenges when evaluating model performance. In this paper, we look at several methods that have been used to assess influenza prevalence using Twitter. We then validate them tests designed avoid illustrate issues standard k-fold cross validation method. also find modifications way partitioned can major effects on model's reported

参考文章(17)
Isabel De la Torre-Díez, Francisco Javier Díaz-Pernas, Míriam Antón-Rodríguez, A content analysis of chronic diseases social groups on Facebook and Twitter. Telemedicine Journal and E-health. ,vol. 18, pp. 404- 408 ,(2012) , 10.1089/TMJ.2011.0227
Aron Culotta, Towards detecting influenza epidemics by analyzing Twitter messages Proceedings of the First Workshop on Social Media Analytics - SOMA '10. pp. 115- 122 ,(2010) , 10.1145/1964858.1964874
David Schlossberg, Clinical Infectious Disease ,(2008)
Marcel Salathé, Shashank Khandelwal, Assessing Vaccination Sentiments with Online Social Media: Implications for Infectious Disease Dynamics and Control PLoS Computational Biology. ,vol. 7, pp. e1002199- ,(2011) , 10.1371/JOURNAL.PCBI.1002199
Connie St Louis, Gozde Zorlu, None, Can Twitter predict disease outbreaks BMJ. ,vol. 344, ,(2012) , 10.1136/BMJ.E2353
Declan Butler, When Google got flu wrong Nature. ,vol. 494, pp. 155- 156 ,(2013) , 10.1038/494155A
Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski, Larry Brilliant, Detecting influenza epidemics using search engine query data Nature. ,vol. 457, pp. 1012- 1014 ,(2009) , 10.1038/NATURE07634
Herman Anthony Carneiro, Eleftherios Mylonakis, Google Trends: A Web‐Based Tool for Real‐Time Surveillance of Disease Outbreaks Clinical Infectious Diseases. ,vol. 49, pp. 1557- 1564 ,(2009) , 10.1086/630200