On the ground validation of online diagnosis with Twitter and medical records

作者: Nilam Ram , Conrad S. Tucker , Victoria C. Barclay , Marcel Salathé , Todd Bodnar

DOI: 10.1145/2567948.2579272

关键词:

摘要: Social media has been considered as a data source for tracking disease. However, most analyses are based on models that prioritize strong correlation with population-level disease rates over determining whether or not specific individual users actually sick. Taking different approach, we develop novel system social-media detection at the level using sample of professionally diagnosed individuals. Specifically, making an accurate influenza diagnosis individual's publicly available Twitter data. We find about half (17/35 = 48.57%) in our were sick explicitly discuss their Twitter. By developing meta classifier combines text analysis, anomaly detection, and social network able to diagnose greater than 99% accuracy even if she does her health.

参考文章(15)
Todd Bodnar, Marcel Salathé, Validating models for disease detection using twitter the web conference. pp. 699- 702 ,(2013) , 10.1145/2487788.2488027
Ljupčo Todorovski, Sašo Džeroski, Combining Classifiers with Meta Decision Trees Machine Learning. ,vol. 50, pp. 223- 249 ,(2003) , 10.1023/A:1021709817809
George L. Tsirogiannis, Dimitrios Frossyniotis, Konstantina S. Nikita, Andreas Stafylopatis, A Meta-classifier Approach for Medical Diagnosis hellenic conference on artificial intelligence. pp. 154- 163 ,(2004) , 10.1007/978-3-540-24674-9_17
Richard L Marquet, Aad IM Bartelds, Sander P van Noort, Carl E Koppeschaar, John Paget, François G Schellevis, Jouke van der Zee, Internet-based monitoring of influenza-like illness (ILI) in the general population of the Netherlands during the 2003–2004 influenza season BMC Public Health. ,vol. 6, pp. 242- 242 ,(2006) , 10.1186/1471-2458-6-242
Aron Culotta, Towards detecting influenza epidemics by analyzing Twitter messages Proceedings of the First Workshop on Social Media Analytics - SOMA '10. pp. 115- 122 ,(2010) , 10.1145/1964858.1964874
Frank E. Grubbs, Procedures for Detecting Outlying Observations in Samples Technometrics. ,vol. 11, pp. 1- 21 ,(1969) , 10.1080/00401706.1969.10490657
Donald R. Olson, Kevin J. Konty, Marc Paladini, Cecile Viboud, Lone Simonsen, Reassessing Google Flu Trends Data for Detection of Seasonal and Pandemic Influenza: A Comparative Epidemiological Study at Three Geographic Scales PLoS Computational Biology. ,vol. 9, pp. e1003256- ,(2013) , 10.1371/JOURNAL.PCBI.1003256
M.F. Porter, An algorithm for suffix stripping Program: Electronic Library and Information Systems. ,vol. 40, pp. 313- 316 ,(1997) , 10.1108/EB046814
E. H. Chan, T. F. Brewer, L. C. Madoff, M. P. Pollack, A. L. Sonricker, M. Keller, C. C. Freifeld, M. Blench, A. Mawudeku, J. S. Brownstein, Global capacity for emerging infectious disease detection Proceedings of the National Academy of Sciences of the United States of America. ,vol. 107, pp. 21701- 21706 ,(2010) , 10.1073/PNAS.1006219107
Declan Butler, When Google got flu wrong Nature. ,vol. 494, pp. 155- 156 ,(2013) , 10.1038/494155A