Granular data regression with neural networks

作者: Mario G. C. A. Cimino , Beatrice Lazzerini , Francesco Marcelloni , Witold Pedrycz

DOI: 10.1007/978-3-642-23713-3_22

关键词:

摘要: Granular data offer an interesting vehicle of representing the available information in problems where uncertainty, inaccuracy, variability or, general, subjectivity have to be taken into account. In this paper, we deal with a particular type granules, namely interval-valued data. We propose multilayer perceptron (MLP) model input-output mappings. The proposed MLP comes weights and biases, is trained using genetic algorithm designed fit different levels granularity. modeling capabilities are illustrated by means its application both synthetic real world datasets.

参考文章(12)
Raquel E. Patiño-Escarcina, Benjamín R. Callejas Bedregal, Aarão Lyra, Interval Computing in Neural Networks: One Layer Interval Neural Networks Lecture Notes in Computer Science. pp. 68- 75 ,(2004) , 10.1007/978-3-540-30561-3_8
Mark R. Baker, Rajendra B. Patil, Universal Approximation Theorem for Interval Neural Networks Reliable Computing. ,vol. 4, pp. 235- 239 ,(1998) , 10.1023/A:1009951412412
Witold Pedrycz, George Vukovich, Granular neural networks Neurocomputing. ,vol. 36, pp. 205- 224 ,(2001) , 10.1016/S0925-2312(00)00342-8
K. M. Murphy, F. Welch, The Structure of Wages Quarterly Journal of Economics. ,vol. 107, pp. 285- 326 ,(1992) , 10.2307/2118330
Antonio Muñoz San Roque, Carlos Maté, Javier Arroyo, Ángel Sarabia, iMLP: Applying Multi-Layer Perceptrons to Interval-Valued Data Neural Processing Letters. ,vol. 25, pp. 157- 169 ,(2007) , 10.1007/S11063-007-9035-Z
Hisao Ishibuchi, Hideo Tanaka, Hidehiko Okada, An architecture of neural networks with interval weights and its application to fuzzy regression analysis Fuzzy Sets and Systems. ,vol. 57, pp. 27- 39 ,(1993) , 10.1016/0165-0114(93)90118-2
A.V. Nandedkar, P.K. Biswas, A Reflex Fuzzy Min Max Neural Network for Granular Data Classification international conference on pattern recognition. ,vol. 2, pp. 650- 653 ,(2006) , 10.1109/ICPR.2006.160