Lorentz-invariant photon number density

作者: Margaret Hawton

DOI: 10.1103/PHYSREVA.78.012111

关键词:

摘要: A Lorentz-invariant positive definite expression for photon number density is derived as the absolute square of invariant scalar product a polarization-sensitive position eigenvector and wave function. It found that this independent form chosen function normalized frequency vector potential\char21{}electric field pair convenient choice in presence matter. The amplitude describing localized state $\ensuremath{\delta}$ at instant which localization detection are seen simultaneous.

参考文章(22)
W.O. Amrein, LOCALIZABILITY FOR PARTICLES OF MASS ZERO. Helvetica Physica Acta. ,vol. 42, pp. 149- 190 ,(1969)
Steven Weinberg, The Quantum Theory of Fields: SUBJECT INDEX Cambridge University Press. ,(1995) , 10.1017/CBO9781139644167
T. D. Newton, E. P. Wigner, Localized States for Elementary Systems Reviews of Modern Physics. ,vol. 21, pp. 400- 406 ,(1949) , 10.1103/REVMODPHYS.21.400
Margaret Hawton, Photon wave mechanics and position eigenvectors Physical Review A. ,vol. 75, pp. 062107- ,(2007) , 10.1103/PHYSREVA.75.062107
J. E. Sipe, Photon wave functions Physical Review A. ,vol. 52, pp. 1875- 1883 ,(1995) , 10.1103/PHYSREVA.52.1875
L. Mandel, CONFIGURATION-SPACE PHOTON NUMBER OPERATORS IN QUANTUM OPTICS Physical Review. ,vol. 144, pp. 1071- 1077 ,(1966) , 10.1103/PHYSREV.144.1071
Margaret Hawton, Photon wave functions in a localized coordinate space basis Physical Review A. ,vol. 59, pp. 3223- 3227 ,(1999) , 10.1103/PHYSREVA.59.3223
K. W. Chan, C. K. Law, J. H. Eberly, Localized single-photon wave functions in free space. Physical Review Letters. ,vol. 88, pp. 100402- ,(2002) , 10.1103/PHYSREVLETT.88.100402
Margaret Hawton, Photon position operator with commuting components Physical Review A. ,vol. 59, pp. 954- 959 ,(1999) , 10.1103/PHYSREVA.59.954
T. O. Philips, Lorentz Invariant Localized States Physical Review. ,vol. 136, pp. 893- ,(1964) , 10.1103/PHYSREV.136.B893