Asymptotic boundary value problems in Banach spaces

作者: Jan Andres , Ralf Bader

DOI: 10.1016/S0022-247X(02)00365-7

关键词:

摘要: Abstract A continuation principle is given for solving boundary value problems on arbitrary (possibly infinite) intervals to Caratheodory differential inclusions in Banach spaces. For this aim, the appropriate fixed point index defined condensing decomposable multivalued operators Frechet This extends and unifies one compact maps Andres et al. [Trans. Amer. Math. Soc. 351 (1999) 4861–4903] as well spaces Bader [Ph.D. Thesis, University of Munich, 1995]. As an application, we prove existence entirely bounded solution a semilinear evolution inclusion.

参考文章(32)
Lech Górniewicz, Topological approach to differential inclusions Springer Netherlands. pp. 129- 190 ,(1995) , 10.1007/978-94-011-0339-8_4
D. Hyman, On decreasing sequences of compact absolute retracts Fundamenta Mathematicae. ,vol. 64, pp. 91- 97 ,(1969) , 10.4064/FM-64-1-91-97
Seh-Ie Park, A UNIFIED FIXED POINT THEORY OF MULTIMAPS ON TOPOLOGICAL VECTOR SPACES Journal of The Korean Mathematical Society. ,vol. 35, pp. 803- 829 ,(1998)
Karol Borsuk, Theory of retracts ,(1967)
Jan Andres, Almost-periodic and bounded solutions of Carathéodory differential inclusions Differential and Integral Equations. ,vol. 12, pp. 887- 912 ,(1999)
Jacob T. Schwartz, Nonlinear functional analysis Courant Institute of Mathematical Science, New York University. ,(1965)
Andrzej Granas, The Leray-Schauder index and the fixed point theory for arbitrary ANRs Bulletin de la Société mathématique de France. ,vol. 79, pp. 209- 228 ,(1972) , 10.24033/BSMF.1737
Jan Andres, Grzegorz Gabor, Lech Górniewicz, Boundary value problems on infinite intervals Transactions of the American Mathematical Society. ,vol. 351, pp. 4861- 4903 ,(1999) , 10.1090/S0002-9947-99-02297-7