A hierarchical foundation for models of sensorimotor control.

作者: G. E. Loeb , I. E. Brown , E. J. Cheng

DOI: 10.1007/S002210050712

关键词:

摘要: Successful performance of a sensorimotor task arises from the interaction descending commands brain with intrinsic properties lower levels system, including dynamic mechanical muscle, natural coordinates somatosensory receptors, interneuronal circuitry spinal cord, and computational noise in these elements. Engineering models biological motor control often oversimplify or even ignore because they appear to complicate an already difficult problem. We modeled three highly simplified systems that reflect essential attributes tasks: acquiring target face random torque-pulse perturbations, optimizing fusimotor gain for same minimizing postural error versus energy consumption during low- high-frequency perturbations. The emergent maintained stability feedback delays, resolved redundancy over-complete systems, helped estimate loads respond suggest general hierarchical approach modeling which better reflects real problem faced by brain, as first step toward identifying actual neurocomputational steps their anatomical partitioning brain.

参考文章(72)
A. J. Pellionisz, Tensor Network Theory of the Central Nervous System and Sensorimotor Modeling Springer, Berlin, Heidelberg. pp. 121- 145 ,(1986) , 10.1007/978-3-642-70911-1_8
A. Prochazka, P. Trend, M. Hulliger, S. Vincent, Ensemble proprioceptive activity in the cat step cycle: towards a representative look-up chart. Progress in Brain Research. ,vol. 80, pp. 61- 74 ,(1989) , 10.1016/S0079-6123(08)62200-1
A. Prochazka, M. Hulliger, P. Trend, N. Dürmüller, Dynamic and Static Fusimotor Set in Various Behavioural Contexts Springer US. pp. 417- 430 ,(1988) , 10.1007/978-1-4899-0812-4_80
Ian E. Brown, Gerald E. Loeb, A Reductionist Approach to Creating and Using Neuromusculoskeletal Models Springer, New York, NY. pp. 148- 163 ,(2000) , 10.1007/978-1-4612-2104-3_10
Y Burnod, P Grandguillaume, I Otto, S Ferraina, PB Johnson, R Caminiti, Visuomotor transformations underlying arm movements toward visual targets: a neural network model of cerebral cortical operations. The Journal of Neuroscience. ,vol. 12, pp. 1435- 1453 ,(1992) , 10.1523/JNEUROSCI.12-04-01435.1992
Eberhard E. FETZ, Larry E. SHUPE, NEURAL NETWORK MODELS OF THE PRIMATE MOTOR SYSTEM Advanced Neural Computers. pp. 43- 50 ,(1990) , 10.1016/B978-0-444-88400-8.50009-1
Simon C. Gandevia, Kinesthesia : roles for afferent signals and motor commands Comprehensive Physiology. pp. 128- 172 ,(2011) , 10.1002/CPHY.CP120104
F. B. Horak, H. C. Diener, Cerebellar control of postural scaling and central set in stance Journal of Neurophysiology. ,vol. 72, pp. 479- 493 ,(1994) , 10.1152/JN.1994.72.2.479
Stephen H. Scott, Ian E. Brown, Gerald E. Loeb, Mechanics of feline soleus: I. Effect of fascicle length and velocity on force output. Journal of Muscle Research and Cell Motility. ,vol. 17, pp. 207- 219 ,(1996) , 10.1007/BF00124243
T Gordon, R B Stein, C K Thomas, Innervation and function of hind-limb muscles in the cat after cross-union of the tibial and peroneal nerves. The Journal of Physiology. ,vol. 374, pp. 429- 441 ,(1986) , 10.1113/JPHYSIOL.1986.SP016089