On a Conjectured Formula for Quiver Varieties

作者: Anders Skovsted Buch

DOI: 10.1023/A:1011245531325

关键词:

摘要: In A.S. Buch and W. Fulton [i>Invent. i>Math. 135 (1999), 665–687] a formula for the cohomology class of quiver variety is proved. This writes as linear combination products Schur polynomials. same paper it conjectured that all coefficients in this are non-negative, given by generalized Littlewood-Richardson rule, which states count certain sequences tableaux called factor sequences. I prove some special cases conjecture. also general conjecture follows from stronger but simpler statement, substantial computer evidence has been obtained. Finally will useful criterion recognizing

参考文章(9)
M.-P. Schützenberger, La correspondance de Robinson Springer, Berlin, Heidelberg. pp. 59- 113 ,(1977) , 10.1007/BFB0090012
Sergey Fomin, Curtis Greene, Noncommutative Schur functions and their applications Discrete Mathematics. ,vol. 306, pp. 1080- 1096 ,(2006) , 10.1016/J.DISC.2006.03.028
A. M. Garsia, S. C. Milne, Method for constructing bijections for classical partition identities. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 78, pp. 2026- 2028 ,(1981) , 10.1073/PNAS.78.4.2026
William Fulton, Universal Schubert polynomials Duke Mathematical Journal. ,vol. 96, pp. 575- 594 ,(1999) , 10.1215/S0012-7094-99-09618-7
Anders Skovsted Buch, Stanley Symmetric Functions and Quiver Varieties Journal of Algebra. ,vol. 235, pp. 243- 260 ,(2001) , 10.1006/JABR.2000.8478
Ian Grant Macdonald, Symmetric functions and Hall polynomials ,(1979)
Anders Skovsted Buch, William Fulton, Chern class formulas for quiver varieties Inventiones Mathematicae. ,vol. 135, pp. 665- 687 ,(1999) , 10.1007/S002220050297
Bruce E. Sagan, The Symmetric Group Graduate Texts in Mathematics. ,(2001) , 10.1007/978-1-4757-6804-6
R P Stanley, Enumerative combinatorics ,(1986)