Grothendieck classes of quiver varieties

作者: Anders Skovsted Buch

DOI:

关键词:

摘要: We prove a formula for the structure sheaf of quiver variety in Grothendieck ring its embedding variety. This generalizes and gives new expressions polynomials. furthermore conjecture that coefficients our have signs which alternate with degree. The proof involves $K$-theoretic generalizations several useful cohomological tools, including Thom-Porteous formula, Jacobi-Trudi Gysin Pragacz.

参考文章(13)
V. Lakshmibai, Peter Magyar, Degeneracy schemes, quiver schemes, and Schubert varieties International Mathematics Research Notices. ,vol. 1998, pp. 627- 640 ,(1998) , 10.1155/S1073792898000397
William Fulton, Piotr Pragacz, Schubert varieties and degeneracy loci ,(1998)
Anders Skovsted Buch, On a Conjectured Formula for Quiver Varieties Journal of Algebraic Combinatorics. ,vol. 13, pp. 151- 172 ,(2001) , 10.1023/A:1011245531325
Anders Skovsted Buch, A Littlewood-Richardson rule for the K-theory of Grassmannians Acta Mathematica. ,vol. 189, pp. 37- 78 ,(2002) , 10.1007/BF02392644
T Józefiak, A Lascoux, P Pragacz, CLASSES OF DETERMINANTAL VARIETIES ASSOCIATED WITH SYMMETRIC AND SKEW-SYMMETRIC MATRICES Mathematics of the USSR-Izvestiya. ,vol. 18, pp. 575- 586 ,(1982) , 10.1070/IM1982V018N03ABEH001400
William Fulton, Robert MacPherson, Categorical Framework for the Study of Singular Spaces ,(1981)
A. LASCOUX, Transition on Grothendieck Polynomials Proceedings of the Nagoya 2000 International Workshop. pp. 164- 179 ,(2001) , 10.1142/9789812810007_0007
C. Lenart, Combinatorial Aspects of the K-Theory of Grassmannians Annals of Combinatorics. ,vol. 4, pp. 67- 82 ,(2000) , 10.1007/PL00001276
N. Gonciulea, V. Lakshmibai, Singular Loci of Ladder Determinantal Varieties and Schubert Varieties Journal of Algebra. ,vol. 229, pp. 463- 497 ,(2000) , 10.1006/JABR.1999.8087
S. Abeasis, A. Del Fra, H. Kraft, The geometry of representations ofA m Mathematische Annalen. ,vol. 256, pp. 401- 418 ,(1981) , 10.1007/BF01679706