Gerschgorin’s theorem for generalized eigenvalue problems in the Euclidean metric

作者: Yuji Nakatsukasa

DOI: 10.1090/S0025-5718-2011-02482-8

关键词:

摘要: We present Gerschgorin-type eigenvalue inclusion sets applicable to generalized problems. Our are defined by circles in the complex plane standard Euclidean metric, and easier compute than known similar results. As one application we use our results provide a forward error analysis for computed of diagonalizable pencil.

参考文章(11)
Ji-guang Sun, G. W. Stewart, Matrix perturbation theory ,(1990)
Richard S. Varga, Geršgorin and his circles ,(2004)
C. Stanley Ogilvy, Excursions in Geometry ,(1990)
Xiao Shan Chen, On perturbation bounds of generalized eigenvalues for diagonalizable pairs Numerische Mathematik. ,vol. 107, pp. 79- 86 ,(2007) , 10.1007/S00211-007-0082-1
J. H. Wilkinson, The algebraic eigenvalue problem ,(1965)
G. W. Stewart, Gershgorin theory for the generalized eigenvalue problem Mathematics of Computation. ,vol. 29, pp. 600- 606 ,(1975) , 10.1090/S0025-5718-1975-0379537-3
Beresford N. Parlett, The symmetric eigenvalue problem ,(1980)
Ren-Cang Li, On perturbations of matrix pencils with real spectra, a revisit Mathematics of Computation. ,vol. 72, pp. 715- 728 ,(2003) , 10.1090/S0025-5718-02-01449-7
V. Kostić, L. J. Cvetković, R. S. Varga, Geršgorin‐type localizations of generalized eigenvalues Numerical Linear Algebra With Applications. ,vol. 16, pp. 883- 898 ,(2009) , 10.1002/NLA.671
Gene H Golub, Charles F Van Loan, Matrix computations ,(1983)