On the Geršgorin-type localizations for nonlinear eigenvalue problems

作者: V. Kostić , D. Gardašević

DOI: 10.1016/J.AMC.2018.05.018

关键词: Eigenvalues and eigenvectorsType (model theory)Applied mathematicsMatrix (mathematics)Nonlinear systemSet (abstract data type)Diagonally dominant matrixComplex planeQuadratic equationComputer science

摘要: Abstract Since nonlinear eigenvalue problems appear in many applications, the research on their proper treatment has drawn a lot of attention lately. Therefore, there is need to develop computationally inexpensive ways localize eigenvalues matrix-valued functions complex plane, especially quadratic matrix polynomials. Recently, few variants Gersgorin localization set for more general problems, pencils and ones, were developed investigated. Here, we introduce approach Gersgorin-type sets case using diagonal dominance, prove some properties such show how they perform several engineering.

参考文章(12)
Vladimir R. Kostić, Agnieszka Międlar, Ljiljana Cvetković, An algorithm for computing minimal Geršgorin sets Numerical Linear Algebra With Applications. ,vol. 23, pp. 272- 290 ,(2016) , 10.1002/NLA.2024
Françoise Tisseur, Karl Meerbergen, The Quadratic Eigenvalue Problem SIAM Review. ,vol. 43, pp. 235- 286 ,(2001) , 10.1137/S0036144500381988
Ljiljana Cvetković, Vladimir Kostić, Rafael Bru, Francisco Pedroche, A simple generalization of Geršgorin’s theorem Advances in Computational Mathematics. ,vol. 35, pp. 271- 280 ,(2011) , 10.1007/S10444-009-9143-6
David Bindel, Amanda Hood, Localization Theorems for Nonlinear Eigenvalue Problems SIAM Journal on Matrix Analysis and Applications. ,vol. 34, pp. 1728- 1749 ,(2013) , 10.1137/130913651
V. Kostić, On general principles of eigenvalue localizations via diagonal dominance Advances in Computational Mathematics. ,vol. 41, pp. 55- 75 ,(2015) , 10.1007/S10444-014-9349-0
Volker Mehrmann, David Watkins, POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE ,(2002)
Yuji Nakatsukasa, Gerschgorin’s theorem for generalized eigenvalue problems in the Euclidean metric Mathematics of Computation. ,vol. 80, pp. 2127- 2142 ,(2011) , 10.1090/S0025-5718-2011-02482-8
V. Kostić, R. S. Varga, L. Cvetković, Localization of generalized eigenvalues by Cartesian ovals Numerical Linear Algebra With Applications. ,vol. 19, pp. 728- 741 ,(2012) , 10.1002/NLA.801
V. Kostić, L. J. Cvetković, R. S. Varga, Geršgorin‐type localizations of generalized eigenvalues Numerical Linear Algebra With Applications. ,vol. 16, pp. 883- 898 ,(2009) , 10.1002/NLA.671
D. Steven Mackey, Niloufer Mackey, Christian Mehl, Volker Mehrmann, Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations SIAM Journal on Matrix Analysis and Applications. ,vol. 28, pp. 1029- 1051 ,(2006) , 10.1137/050628362