Positon, Negaton, Soliton and Complexiton Solutions to a Four-Dimensional Nonlinear Evolution Equation

作者: ZHAQILAO , ZHI-BIN LI

DOI: 10.1142/S0217984909021053

关键词:

摘要: A generalized Wronskian formulation is presented for a four-dimensional nonlinear evolution equation. The representative systems are explicitly solved by selecting broad set of sufficient conditions which make the determinant solution to bilinearized obtained formulas provide us with comprehensive approach construct explicit exact solutions equation, positons, negatons, solitons and complexitons computed Applying Hirota's direct method, multi-soliton, non-singular complexiton, their interaction equation also obtained.

参考文章(20)
Wen-Xiu Ma, Yuncheng You, Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions Transactions of the American Mathematical Society. ,vol. 357, pp. 1753- 1778 ,(2004) , 10.1090/S0002-9947-04-03726-2
Wen Xiu Ma, Complexiton solutions to the Korteweg–de Vries equation Physics Letters A. ,vol. 301, pp. 35- 44 ,(2002) , 10.1016/S0375-9601(02)00971-4
V.B. Matveev, Positon-positon and soliton-positon collisions: KdV case Physics Letters A. ,vol. 166, pp. 209- 212 ,(1992) , 10.1016/0375-9601(92)90363-Q
Xianguo Geng, Yunling Ma, N-soliton solution and its Wronskian form of a -dimensional nonlinear evolution equation Physics Letters A. ,vol. 369, pp. 285- 289 ,(2007) , 10.1016/J.PHYSLETA.2007.04.099
Yishen Li, Jin E. Zhang, Bidirectional soliton solutions of the classical Boussinesq system and AKNS system Chaos Solitons & Fractals. ,vol. 16, pp. 271- 277 ,(2003) , 10.1016/S0960-0779(02)00312-0
YUQIN YAO, DAJUN ZHANG, DENGYUAN CHEN, THE DOUBLE WRONSKIAN SOLUTIONS TO THE KADOMTSET–PETVIASHVILI EQUATION Modern Physics Letters B. ,vol. 22, pp. 621- 641 ,(2008) , 10.1142/S0217984908015176