Towards efficient backward-in-time adjoint computations using data compression techniques

作者: E.C. Cyr , J.N. Shadid , T. Wildey

DOI: 10.1016/J.CMA.2014.12.001

关键词:

摘要: Abstract In the context of a posteriori error estimation for nonlinear time-dependent partial differential equations, state-of-the-practice is to use adjoint approaches which require solution backward-in-time problem defined by linearization forward problem. One major obstacles in practical application these need store, or recompute, define and evaluate representation. This study considers data compression techniques approximate solutions employed integration. The development derives an representation that accounts difference between standard-approach compressed approximation solution. algorithmically similar standard only requires computation quantity interest data-compressed reconstructed (i.e. scalar quantities can be evaluated as integrated). approach then compared with existing techniques, such checkpointing time-averaged adjoints. Finally, we provide numerical results indicating potential efficiency our on transient diffusion–reaction equation Navier–Stokes equations. These demonstrate memory ratios up 450 × while maintaining reasonable accuracy error-estimates.

参考文章(24)
P. Hansbo, D. Estep, C. Johnson, K. Eriksson, Computational Differential Equations ,(1996)
T. Bui-Thanh, K. Willcox, O. Ghattas, Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space SIAM Journal on Scientific Computing. ,vol. 30, pp. 3270- 3288 ,(2008) , 10.1137/070694855
Andreas Griewank, Andrea Walther, Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation ACM Transactions on Mathematical Software. ,vol. 26, pp. 19- 45 ,(2000) , 10.1145/347837.347846
I. Charpentier, Checkpointing Schemes for Adjoint Codes: Application to the Meteorological Model Meso-NH SIAM Journal on Scientific Computing. ,vol. 22, pp. 2135- 2151 ,(2001) , 10.1137/S1064827598343735
D. Estep, V. Ginting, D. Ropp, J. N. Shadid, S. Tavener, An A Posteriori–A Priori Analysis of Multiscale Operator Splitting SIAM Journal on Numerical Analysis. ,vol. 46, pp. 1116- 1146 ,(2008) , 10.1137/07068237X
D. Estep, S. Tavener, T. Wildey, A Posteriori Analysis and Improved Accuracy for an Operator Decomposition Solution of a Conjugate Heat Transfer Problem SIAM Journal on Numerical Analysis. ,vol. 46, pp. 2068- 2089 ,(2008) , 10.1137/060678737
P.G. Ciarlet, Basic error estimates for elliptic problems Handbook of Numerical Analysis. ,vol. 2, pp. 17- 351 ,(1991) , 10.1016/S1570-8659(05)80039-0
Qiqi Wang, Parviz Moin, Gianluca Iaccarino, Minimal Repetition Dynamic Checkpointing Algorithm for Unsteady Adjoint Calculation SIAM Journal on Scientific Computing. ,vol. 31, pp. 2549- 2567 ,(2009) , 10.1137/080727890
V. Carey, D. Estep, A. Johansson, M. Larson, S. Tavener, Blockwise Adaptivity for Time Dependent Problems Based on Coarse Scale Adjoint Solutions SIAM Journal on Scientific Computing. ,vol. 32, pp. 2121- 2145 ,(2010) , 10.1137/090753826