A posteriori error analysis of IMEX multi-step time integration methods for advection-diffusion-reaction equations

作者: Jehanzeb H. Chaudhry , Donald Estep , Victor Ginting , John N. Shadid , Simon Tavener

DOI: 10.1016/J.CMA.2014.11.015

关键词:

摘要: Abstract Implicit–Explicit (IMEX) schemes are an important and widely used class of time integration methods for both parabolic hyperbolic partial differential equations. We develop accurate a posteriori error estimates user-defined quantity interest two classes multi-step IMEX advection–diffusion–reaction problems. The analysis proceeds by recasting the into variational form suitable employing adjoint problems computable residuals. quantify distinct contributions from various aspects spatial temporal discretizations, can be to evaluate discretization choices. Numerical results presented that demonstrate accuracy representative set

参考文章(40)
Vincent Heuveline, Rolf Rannacher, A posteriori error control for finite element approximations of elliptic eigenvalue problems Advances in Computational Mathematics. ,vol. 15, pp. 107- 138 ,(2001) , 10.1023/A:1014291224961
F. Garcia, M. Net, J. Sánchez, A comparison of high-order time integrators for highly supercritical thermal convection in rotating spherical shells computational science and engineering. ,vol. 95, pp. 273- 284 ,(2014) , 10.1007/978-3-319-01601-6_22
P. Hansbo, D. Estep, C. Johnson, K. Eriksson, Computational Differential Equations ,(1996)
C. Roedig, D. Alic, O. Zanotti, General relativistic radiation hydrodynamics of accretion flows – II. Treating stiff source terms and exploring physical limitations Monthly Notices of the Royal Astronomical Society. ,vol. 426, pp. 1613- 1631 ,(2012) , 10.1111/J.1365-2966.2012.21821.X
Andreas Griewank, Andrea Walther, Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation ACM Transactions on Mathematical Software. ,vol. 26, pp. 19- 45 ,(2000) , 10.1145/347837.347846
D Estep, V Carey, V Ginting, S Tavener, T Wildey, A posteriori error analysis of multiscale operator decomposition methods for multiphysics models Journal of Physics: Conference Series. ,vol. 125, pp. 012075- ,(2008) , 10.1088/1742-6596/125/1/012075
Hector D. Ceniceros, George O. Mohler, A Practical Splitting Method for Stiff SDEs with Applications to Problems with Small Noise Multiscale Modeling & Simulation. ,vol. 6, pp. 212- 227 ,(2007) , 10.1137/060667724
Mats G. Larson, Fredrik Bengzon, Adaptive finite element approximation of multiphysics problems Communications in Numerical Methods in Engineering. ,vol. 24, pp. 505- 521 ,(2007) , 10.1002/CNM.1087
D. Estep, V. Ginting, D. Ropp, J. N. Shadid, S. Tavener, An A Posteriori–A Priori Analysis of Multiscale Operator Splitting SIAM Journal on Numerical Analysis. ,vol. 46, pp. 1116- 1146 ,(2008) , 10.1137/07068237X
J.Tinsley Oden, Mark Ainsworth, A Posteriori Error Estimation in Finite Element Analysis ,(2000)