Modelling and optimization of grinding processes

作者: E. BRINKSMEIER , H. K. TÖNSHOFF , C. CZENKUSCH , C. HEINZEL

DOI: 10.1023/A:1008908724050

关键词:

摘要: The paper describes different methods for modelling and optimization of grinding processes. First the process product quality characterizing quantities have to be measured. Afterwards model types, e.g. physical–empirical basic models as well empirical based on neural networks, fuzzy set theory standard multiple regression methods, are discussed an off-line conceptualization using a genetic algorithm. assessment results, which build individuals in algorithm's population, is carried out target tree method. presented integrated into existing information system, part three control loop system assurance.

参考文章(7)
D.R. Hush, B.G. Horne, Progress in supervised neural networks IEEE Signal Processing Magazine. ,vol. 10, pp. 8- 39 ,(1993) , 10.1109/79.180705
H.K. Tönshoff, J. Peters, I. Inasaki, T. Paul, Modelling and Simulation of Grinding Processes CIRP Annals. ,vol. 41, pp. 677- 688 ,(1992) , 10.1016/S0007-8506(07)63254-5
E. Brinksmeier, E. Schneider, W.A. Theiner, H.K. Tönshoff, Nondestructive Testing for Evaluating Surface Integrity CIRP Annals. ,vol. 33, pp. 489- 509 ,(1984) , 10.1016/S0007-8506(16)30171-8
T. Paul, C. Czenkusch, H. K. Tönshoff, Informationssystem zur Gestaltung und Optimierung von Schleifprozessen VDI-Z. ,vol. 136, pp. 82- 86 ,(1994)
Lotfi A. Zadeh, Fuzzy sets Fuzzy sets, fuzzy logic, and fuzzy systems. pp. 394- ,(1996)
David E. Goldberg, Genetic algorithms in search, optimization and machine learning Reading: Addison-Wesley. ,(1989)