Use of a pharmacokinetic/pharmacodynamic model to design an optimal dose input profile.

作者: Kyungsoo Park , Davide Verotta , Suneel K. Gupta , Lewis B. Sheiner

DOI: 10.1023/A:1021068202606

关键词:

摘要: A model for the pharmacodynamic effect of a drug (designated only X), and use to explore optimal input is described. The data analyzed here are from crossover comparison study 4 active treatments, yielding distinct concentration vs. time curves, plus placebo in 32 subjects. expresses total as sum (pure) effect. latter allows possible tolerance (found) effects (not found). Random allow interindividual differences be expressed. Conditioning on fitted model, population profile designed that obeys certain protocol constraints. minimizes expectation squared between target resulting response over given interval. fixed constant, chosen either individuals' maximum level baseline regimen used or typical individual this regimen, predicted model. taken estimated nonparametric distribution subjects' random effects. As one goal early clinical studies drugs may provide basis designing an delivery (with respect specified loss function), we suggest report example reasonable way go about finding such profile.

参考文章(14)
N L Benowitz, L B Sheiner, H C Porchet, Pharmacodynamic model of tolerance: application to nicotine. Journal of Pharmacology and Experimental Therapeutics. ,vol. 244, pp. 231- 236 ,(1988)
Karin E. Fattinger, Davide Verotta, A nonparametric subject-specific population method for deconvolution: II. External validation Journal of Pharmacokinetics and Biopharmaceutics. ,vol. 23, pp. 611- 634 ,(1995) , 10.1007/BF02353464
Jean-Michel Gries, Iñaki F. Troconiz, Davide Verotta, Mark Jacobson, Lewis B. Sheiner, A pooled analysis of CD4 response to zidovudine and zalcitabine treatment in patients with AIDS and AIDS‐related complex Clinical Pharmacology & Therapeutics. ,vol. 61, pp. 70- 82 ,(1997) , 10.1016/S0009-9236(97)90183-1
Jean Gaillot, Jean-Louis J. Steimer, Alain J. Mallet, Jean J. Thebault, Albert Bieder, A Priori lithium dosage regimen using population characteristics of pharmacokinetic parameters Journal of Pharmacokinetics and Biopharmaceutics. ,vol. 7, pp. 579- 628 ,(1979) , 10.1007/BF01061210
Karin E. Fattinger, Davide Verotta, A nonparametric subject-specific population method for deconvolution: I. Description, internal validation, and real data examples Journal of Pharmacokinetics and Biopharmaceutics. ,vol. 23, pp. 581- 610 ,(1995) , 10.1007/BF02353463
Alan Schumitzky, Nonparametric EM Algorithms for estimating prior distributions Applied Mathematics and Computation. ,vol. 45, pp. 143- 157 ,(1991) , 10.1016/0096-3003(91)90077-Z
David Z. D'Argenio, John H. Rodman, Targeting the systemic exposure of teniposide in the population and the individual using a stochastic therapeutic objective Journal of Pharmacokinetics and Biopharmaceutics. ,vol. 21, pp. 223- 251 ,(1993) , 10.1007/BF01059772
Darryl Katz, David Z. D'Argenio, Implementation and evaluation of control strategies for individualizing dosage regimens, with application to the aminoglycoside antibiotics Journal of Pharmacokinetics and Biopharmaceutics. ,vol. 14, pp. 523- 537 ,(1986) , 10.1007/BF01059659
Chuanpu Hu, William S. Lovejoy, Steven L. Shafer, An efficient control strategy for dosage regimens Journal of Pharmacokinetics and Biopharmaceutics. ,vol. 22, pp. 73- 94 ,(1994) , 10.1007/BF02353411
H. Akaike, A new look at the statistical model identification IEEE Transactions on Automatic Control. ,vol. 19, pp. 716- 723 ,(1974) , 10.1109/TAC.1974.1100705