Comparison of Two Feature Selection Methods in Intrusion Detection Systems

作者: M. J. Fadaeieslam , B. Minaei-Bidgoli , M. Fathy , M. Soryani

DOI: 10.1109/CIT.2007.99

关键词:

摘要: … introduced to remove redundant and irrelevant features, because raw features may reduce … a new method for feature selection based on Decision Dependent Correlation (DDC). We …

参考文章(8)
Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan, Automatic subspace clustering of high dimensional data for data mining applications Proceedings of the 1998 ACM SIGMOD international conference on Management of data - SIGMOD '98. ,vol. 27, pp. 94- 105 ,(1998) , 10.1145/276304.276314
Thomas M. Cover, Joy A. Thomas, Elements of information theory ,(1991)
Srilatha Chebrolu, Ajith Abraham, Johnson P Thomas, None, Feature deduction and ensemble design of intrusion detection systems Computers & Security. ,vol. 24, pp. 295- 307 ,(2005) , 10.1016/J.COSE.2004.09.008
E. Osuna, R. Freund, F. Girosit, Training support vector machines: an application to face detection computer vision and pattern recognition. pp. 130- 136 ,(1997) , 10.1109/CVPR.1997.609310
G. Qu, S. Hariri, M. Yousif, A new dependency and correlation analysis for features IEEE Transactions on Knowledge and Data Engineering. ,vol. 17, pp. 1199- 1207 ,(2005) , 10.1109/TKDE.2005.136
A.H. Sung, S. Mukkamala, Identifying important features for intrusion detection using support vector machines and neural networks symposium on applications and the internet. pp. 209- 216 ,(2003) , 10.1109/SAINT.2003.1183050
Christopher J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition Data Mining and Knowledge Discovery. ,vol. 2, pp. 121- 167 ,(1998) , 10.1023/A:1009715923555